AKT II – Atomic, Nuclear and Particle Physics II

18.3.2021

Standard Model of Particle Physics

	Generations weak electr color										Gluons are carrying both color and anti-color. They participate in strong						
ty +1	arks	up u 2.2 MeV	charm c 1.3 GeV	top t 173 GeV	×+	n +3	rgb teraction		arity -1		photon γ 0 GeV	o higgs H <u>125 GeV</u>		higgs H 125 GeV	interactions. There are 8 types: $\frac{r\overline{b}+b\overline{r}}{\sqrt{2}}, \frac{r\overline{g}+g\overline{r}}{\sqrt{2}}, \frac{b\overline{g}+g\overline{b}}{\sqrt{2}}, \frac{r\overline{r}-b\overline{b}}{\sqrt{2}}, -i\frac{r\overline{b}-b\overline{r}}{\sqrt{2}}, -i$		
trinsic parit	Qui	down d 4.7 MeV	strange s 0.1 GeV	bottom b 4.2 GeV	-½ action	-½ l interactio	EIM INTERACTION rgb strong int		ons, spin 1, intrinsic pa	strong	gluon g 0 GeV		parity +1		Lifetime: muon 2 μ s, tauon 290 fs Neutrinos v _e , v _µ , and v _r are mixtures		
i, spin ½, int	S	electron e ⁻ 0.5 MeV	muon μ [.] 0.1 GeV	tau τ 1.8 GeV	-½ weak inter	-1 EM		-		action	W boson W [±] 80 GeV	Q=±1			of 3 fundamental neutrino states with defined masses v ₁ , v ₂ , and v ₃ .		
jon	ptoi	electron	muon	tau					Bos	inter			1		Hadrons are bound Quark states		
Ferm	ľ	neutrino V _e	neutrino v _µ	neutrino ν _τ	%+				Gauge	weaki	Z boson Z				Baryons: Hadrons w. odd number of quarks e.g. p(uud), n(ddu), half-spin		
		<1.1 eV	<0.2 MeV	<18 MeV							51 007				Mesons: Hadrons with even number of quarks (e.g. $q\overline{q}$), integer spin		
Inte	nteraction Vertices																

Electromagnetism	n	Strong Interaction		Weak Ch	narged Current Interaction	Weak Neutral Interaction		
e^{-} e^{-} All charge particles never charge ges flave $\alpha = 1/2$	ged s, nan- or. 137	g g g g g	² Only Quarks and the gluon itself, never changes flavor. $\alpha_S = 1$	e ⁻ v _o W	W^{t} couples charged Leptons with corresp. neutrinos and all Quark combinations so that charge is conserved. Always changes flavor! $\alpha_{W} = 1/30$	v _e g _z v _e	All Fermions Never changes flavor. $\alpha_Z = 1/30$	
Coupling constant g Detern boson.		ermines strength of interaction between gauge boson and fermion = probability of fermion to emit or absorb on. Scattering process with two vertices: $\mathcal{M} \propto g^2 \Longrightarrow$ Interaction probability $p = \mathcal{M} ^2 \propto g^4$						
Fine struc. const. α		; $\alpha_{EM} = \frac{e}{4\pi\varepsilon}$	² <u> ₀ ħc</u> . Intrinsic strengt	h of weak inte	raction > QED, but because of W	/-boson's large n	nass it's smaller.	

Natural Units

Physical Quantity	[kg, m, s]	[ħ, c , GeV]	$\hbar = c = 1$	conversion	Further Units
energy E	nergy E $[J] = \left[\frac{kg m^2}{s^2}\right]$		[GeV]	$E[J] = E[eV] \cdot e$	Barn $[b]$ $1b = 10^{-28} m^2$
momentum $ec{p}$	$\left[\frac{kg m}{s}\right]$	$\left[\frac{GeV}{c}\right]$	[GeV]	$\vec{p}\left[\frac{kgm}{s}\right] = \frac{\vec{p}[eV]\cdot e}{c}$	$\hbar c = 197 \text{MeV fm} \approx 0.2 \text{GeV fm}$ $\hbar \approx 10^{-34} Ic$, $a \approx 10^{-19} C$, $c \approx 10^8 \frac{m}{2}$
mass m	[<i>kg</i>]	$\left[\frac{GeV}{c^2}\right]$	[GeV]	$m[kg] = \frac{m[eV] \cdot e}{c^2}$	Heavyside-Lorentz: $\hbar = \epsilon_0 = \mu_0 = 1$
time t	[<i>s</i>]	$\left[\frac{\hbar}{GeV}\right]$	$\left[\frac{1}{GeV}\right]$	$t[s] = t \left[\frac{1}{eV}\right] \frac{\hbar}{e} = t \left[\frac{1}{G}\right]$	$\frac{1}{eV} \frac{0.2[GeV]10^{-15}[m]}{c[m/s]}$
distance d	[m]	$\left[\frac{\hbar c}{GeV}\right]$	$\left[\frac{1}{GeV}\right]$	$d[m] = d\left[\frac{1}{eV}\right]\frac{\hbar c}{e} = d$	$\left[\frac{1}{GeV}\right] 0.2[GeV] 10^{-15}[m]$
area A	$[m^2]$	$\left[\left(\frac{\hbar c}{GeV}\right)^2\right]$	$\left[\frac{1}{GeV^2}\right]$	$A[m^2] = A\left[\frac{1}{eV^2}\right] \left(\frac{\hbar c}{e}\right)^2 =$	$=A\left[\frac{1}{GeV^2}\right](0.2[GeV]10^{-15}[m])^2$

Special Relativity and Four-Vectors

Beta and Gamma	$\gamma = \frac{1}{\sqrt{1-\beta^2}}; \ \beta = \frac{v}{c}$	Lorentz- Let S' be the "m transformation of S' with respe	hoving" system, and let S be the "rest" system; i.e. velocity and direction ct to S determine magnitude and sign of β . $\eta_{\mu\nu}=\eta^{\mu\nu}=\text{diag}(1,-1,-1,-1)$
Active LT Boost in x $S' \rightarrow S$:	$\Lambda^{\mu}{}_{\nu} = \begin{bmatrix} \gamma & \beta\gamma & 0\\ \beta\gamma & \gamma & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$	0] How does "moving" 0 system S' look like in 0 "rest" system S? 1] $a^{\mu} = \Lambda^{\mu} v^{\alpha'\nu}$	$ \frac{\gamma e}{1} LT \\ in x, \\ \gamma': \qquad \tilde{\Lambda}^{\mu}{}_{\nu} = \begin{bmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $ How does "rest" system S look like in "moving" S'? $a'^{\mu} = \tilde{\Lambda}^{\mu}{}_{\nu}a^{\nu} $
4-vector position	$x^{\mu} = \begin{pmatrix} ct \\ \vec{x} \end{pmatrix} \stackrel{c=1}{=} \begin{pmatrix} t \\ \vec{x} \end{pmatrix}$	Proper Time $ au$ in S' $ds^2 = ds'^2$	$\Rightarrow c^2 dt^2 - dx^2 - dy^2 - dz^2 = c^2 d\tau^2 \Rightarrow d\tau^2 = \frac{ds^2}{c^2} = \left(1 - \frac{\vec{v}^2}{c^2}\right) dt^2 \Rightarrow d\tau = \frac{1}{\gamma} dt$
4-vector veloicity	$u^{\mu} = \frac{dx^{\mu}}{d\tau} = \frac{dx^{\mu}}{dt}\frac{dt}{d\tau} = 1$	$\gamma \frac{dx^{\mu}}{dt} = \gamma \begin{pmatrix} c \\ \vec{v} \end{pmatrix} = \begin{pmatrix} \gamma c \\ \gamma \vec{v} \end{pmatrix} \stackrel{c=1}{=} \begin{pmatrix} \gamma \\ \gamma \vec{v} \end{pmatrix}$	$u^{\mu}u_{\mu}=\gamma^2(c^2-ec{v}^2)=c^2>0\Rightarrow$ time-like, invariant
4-vector momentum	$p^{\mu}=m_{0}u^{\mu}=m_{0}\left(egin{matrix} \gamma u \ \gamma i \end{pmatrix} ight.$	$ \begin{pmatrix} c \\ c \\ \vec{p} \end{pmatrix} = \begin{pmatrix} \frac{E}{c} \\ \vec{p} \end{pmatrix} = \begin{pmatrix} m_0 c + \frac{E_{kin}}{c} \\ \vec{p} \end{pmatrix} \stackrel{c=1}{=} \begin{pmatrix} c \\ \vec{p} \end{pmatrix} $	$ \begin{pmatrix} m_0 + E_{kin} \\ \vec{p} \end{pmatrix} = \begin{pmatrix} E \\ \vec{p} \end{pmatrix} \begin{pmatrix} p^{\mu} p_{\mu} = p_0^2 - \vec{p}^2 \equiv \frac{E^2}{c^2} - \vec{p}^2 = m_0^2 c^2 \text{invariant} \\ p^{\mu} p_{\mu} \stackrel{c=1}{=} p_0^2 - \vec{p}^2 \equiv E^2 - \vec{p}^2 = m_0^2 \text{invariant} \end{cases} $
Derivations	$\partial_{\mu} = \left(\frac{1}{c}\partial_t, \vec{\nabla}\right) \stackrel{c=1}{=} \left(\partial_t$	$(\vec{\nabla})$ $\partial^{\mu} = \begin{pmatrix} \frac{1}{c} \partial_t \\ -\vec{\nabla} \end{pmatrix} \stackrel{c=1}{=} \begin{pmatrix} \partial_t \\ -\vec{\nabla} \end{pmatrix}$	$\partial_{\mu}\partial^{\mu} = \Box = \frac{\partial^2}{\partial t^2} - \frac{1}{c^2} \vec{\nabla}^2 \stackrel{c=1}{=} \frac{\partial^2}{\partial t^2} - \vec{\nabla}^2 \stackrel{E = \gamma m_0}{\vec{p}} \stackrel{F = \gamma m_0}{=} \vec{v} \stackrel{\sigma}{=} \gamma m_0 \vec{\beta} \stackrel{c=1}{=} \gamma m_0 \vec{\beta}$
Energy:	massive particle: $E =$	$\sqrt{m_0^2 c^4 + \vec{p}^2 c^2} \stackrel{c=1}{=} \sqrt{m_0^2 + \vec{p}^2}$	massless particle: $E = \vec{p} c \stackrel{c=1}{=} \vec{p} $ $\vec{v} = \frac{p}{\gamma m_0} = \frac{p}{E}$

Particle Accelerators and Detectors

$\stackrel{p}{\rightarrow} \stackrel{e}{\leftarrow}$ Collider	Center-of-mass frame: $p_p^{\mu} \stackrel{c=1}{=} \left(\begin{array}{c} 0.47 \\ 0$	$ \binom{m_p + E_{kin}^p}{p_p} \approx \binom{E_{kin}^p}{p_p} \approx \binom{920 GeV}{920 GeV}; \ p_e^{-1} $	$\frac{u}{2} \stackrel{c=1}{=} \binom{E_{kin}^e}{p_e} \approx \binom{27.5 GeV}{-27.5 GeV}$				
(e.g. hera):	$p_{tot}^{\mu} = p_p^{\mu} + p_e^{\mu} = \begin{pmatrix} 947.5 \text{ GeV} \\ 892.5 \text{ GeV} \end{pmatrix}$ Available Energy: $\sqrt{s} = \sqrt{p_{tot}^{\mu} p_{\mu}^{tot}} = \sqrt{(947.5^2 - 892.5^2)} = 318 \text{ GeV}$						
Fixed Target proton: what	proton rest frame: $p_p^{\mu} \stackrel{c=1}{=} \binom{m_p}{0}$; electron moves: $p_e^{\mu} \stackrel{c=1}{=} \binom{E_{kin}^e}{p_e}$; $p_{tot}^{\mu} = p_p^{\mu} + p_e^{\mu} = \binom{m_p + E_{kin}^e}{p_e}$						
energy is	Available Energy: $\sqrt{s} = \sqrt{p_{tot}^{\mu} p_{\mu}^{tot}}$	$=\sqrt{\left(m_p+E_{kin}^e\right)^2-p_e^2}\approx\sqrt{\left(m_p+E_{kin}^e\right)^2}$	$\left(E_{kin}^{e}\right)^{2} - \left(E_{kin}^{e}\right)^{2} = \sqrt{m_{p}^{2} + 2m_{p}E_{kin}^{e} + (E_{kin}^{e})^{2} - (E_{kin}^{e})^{2}}$				
required for same s?	$\sqrt{s} = \sqrt{m_p^2 + 2m_p E_{kin}^e} \approx \sqrt{2m_p^2}$	$\overline{E_{kin}^e} \Longrightarrow E_{kin}^e = \frac{s}{2m_p} \Longrightarrow$ would require	electron energy $E_{kin}^e = \frac{318^2}{2 \cdot 1} = 50\ 500\ GeV$ for same s				
LHC resolution	$E = h\nu \approx h \frac{c}{\lambda} \Longrightarrow \lambda = \frac{hc}{E}; E_{LHC}$	$= 14TeV \Longrightarrow \lambda = 10^{-19}m$ (quarks: $10^{-19}m$	¹⁷ <i>m</i>) Interactions at ATLAS, CMS, ALICE, LHCb				
LINAC	A voltage generator induces EM	field inside the RF cavities with 400MH	z. LHC: 8 × 2 <i>MeV</i>				
Cyclic accel.	2 types of magnets: Dipol magn	ets for beam "bending", quadrupole ma	agnets for focusing (only in one axis!)				
Synchrotron	Bremsstrahlung energy loss $E =$	$=\frac{4\pi}{3}\frac{e^2\beta^2\gamma^4}{R}$					
Detecting	Measuring momentum of charg	ed particle by detecting deflection thro	ugh Lorentz force (easy compared to energy detection)				
momentum	$F_Z = F_L \Longrightarrow m\omega^2 r = eBv v = r$	$r\omega \Longrightarrow \omega = \frac{v}{r} \Longrightarrow m \frac{v^2}{r^2} r = eBv \Longrightarrow m \frac{v}{r}$	$= eB \Longrightarrow \frac{p}{r} = eB \Longrightarrow \boxed{p = eBr}$				
	(1) Particle moves through gase	ous substance, liberates electrons, whic	h drift in an electric field towards sense wires.				
	(2) Particle moves through dope	ed silicon waver, and generate electron-	hole pairs.				
Tracking		y y	The holes drift in direction of the electric field and are collected by pn-junctions. Sensors are shaped in				
detector	p-type −25 μm		strips. One particle = 10000 electron-hole-pairs.				
	n-type + - + + - V silicon + - + - V	$R \longrightarrow B$	Detectors are placed in cylindrical surfaces. A homogenous \vec{B} field is applied.				
	<u> </u>	$(x) \rightarrow x \qquad (x) $	$p\left[\frac{GeV}{c}\right]\cos(\lambda) = 0.3B[T]R[m]$				
	111111 Photom		Photo effect: γ gets absorbed, e^- is emitted.				
Photons:	a/n 11/1/11	Charged article traverses dielectric	Small energies $E_e = E_\gamma - E_{binding} \sigma \propto \frac{1}{E^3}$				
Čerenkov		medium $n > \frac{c}{2} \implies \cos(n) = \frac{ct/n}{2} = \frac{ct/n}{2} = \frac{1}{2}$	Compton				
	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	n ress(t) vt βct nβ	effect: large energies $\sigma \propto \frac{1}{E}$				
EM shower	A high-energy electron interacts in a medium and radiates bremsstrahlung, which turns into e^-e^+ pair. Also a primary interaction of a high-energy photon will produce e^-e^+ and create a shower. The pair production process continues to produce a cascade of photons, electrons and positrons. The number of particles double after each radiation length X_0 Energy of a particle after x radiation lengths: $\langle E \rangle = \frac{E}{2^x}$ Shower stops, when $\langle E \rangle \leq E_c \Rightarrow$ $E_c = \frac{E}{2^x max} \Rightarrow 2^{x_{max}} = \frac{E}{E_c} \Rightarrow \ln(2^{x_{max}}) = \ln(\frac{E}{E_c}) \Rightarrow \ln(2) x_{max} = \ln(\frac{E}{E_c}) \Rightarrow x_{max} = \frac{\ln(E/E_c)}{\ln(2)}$						
EM calorimeters	Measures Energy of e^- , e^+ , γ w shower in lead layers. Scintillato	ith $E>100 MeV$. Alternate layers of high detects the created electrons. Energy	gh-Z material (e.g. lead) and scintillator material. EM- resolution $\frac{\sigma_E}{E} = \frac{3\% - 10\%}{\sqrt{E/GeV}}$.				
Hadron calorimeter	Measures Energy of hadronic sh and thin layers of active materia	owers. Large. Again, sandwich structur I (eg plastic scintillators). Energy resolu	e with thick layers of high-density absorbers (eg steel) tion $\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E/GeV}}$				
Scintillators	Cost effective way to detect pas some of the scintillator molecul fluorescent dye, the molecules (sage of charged particles when precise es in an excited state. The subsequent c of the dye absorb the UV photons and e	spatial info is not required. When passing, they leave lecay results in emission of UV photons. By adding mit blue light, which is detected by photomultipliers.				
	The ion carrie	es electrons and relativistic rise iced charge $\alpha \ln(\beta^2 \gamma^2)$	lonisation energy loss per unit length of relativistic charged particle passing through a medium:				
	Anderson- $x = \frac{1}{2}$, Anderson- $x = \frac{1}{2}$, t	-Bloch Radiative C	$-\frac{dE}{dx} = KZ_e^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{l_0^2} \right) - \beta^2 - \delta(\beta \gamma) \right]$				
Bethe-Bloch		Radiative	K constants, Z_e charge number particle,				
	d oniza	ition reach 1%	<i>Z</i> charge number material, <i>A</i> mass number material,				
		Without 8	$I_0 \approx 10Z \ eV$ ionization potential				
		10 100 1000 10 ⁴ 10 ⁵ 10 ⁶ βγ	$o(p\gamma)$ Energy correction				
	0.1 1 10 100 [MeV/c]	LI 10 100 LI 10 100 [GeV/c] [TeV/c]	J - independent of particle mass				
High energy e^- detection	$\frac{dE}{dx} = \left(\frac{dE}{dx}\right)_{radiation} + \left(\frac{dE}{dx}\right)_{ionisal}$	$\frac{\left(\frac{dE}{dx}\right)_{radiation}}{=-\frac{E}{x_0}\left(\frac{dE}{dx}\right)_{ionisation}}$	Bethe-Bloch formula needs modification, because of small electron mass, and e^-e^- QM effects.				

Fermi's Golden Rule

Schedunger, ik
$$\frac{d}{dz} \Psi(x, t) = \hat{H} \Psi(x, t) \begin{bmatrix} \hat{H} = \hat{H}_{0} + \hat{H}^{2}(x, t) \Rightarrow (h, \frac{d}{dz}) = k_{0}(x, t) \sum_{k} q_{k}(x) q_{k}(x) e^{-it_{k}(x, h)} = (h, \frac{d}{dz}) \sum_{k} q_{k}(x) q_{k}(x) q_{k}(x) e^{-it_{k}(x, h)} = (h, \frac{d}{dz}) \sum_{k} q_{k}(x) q_{k}(x) q_{k}(x) q_{k}(x) e^{-it_{k}(x, h)} = (h, \frac{d}{dz}) \sum_{k} q_{k}(x) q_{k}(x) q_{k}(x) e^{-it_{k}(x, h)} = (h, \frac{d}{dz}) \sum_{k} q_{k}(x) q_{$$

Lorentz-Invariant Transition Rate for Two Body Decay

	$(8) \Longrightarrow \Gamma_{fi} = \frac{2\pi}{\hbar} \left T_{fi} \right ^2 \int_0^\infty \delta(E_f - E_i) dn \stackrel{\hbar=1}{\Longrightarrow} \Gamma_{fi} = 2\pi \left T_{if} \right ^2 \int_0^\infty \delta(E_f - E_i) dn \left E_i = E_{ai}, E_f = E_1 + E_2 \Longrightarrow$
Decay	$\Gamma_{fi} = 2\pi T_{fi} ^2 \int \delta(E_1 + E_2 - E_a) dn = 2\pi T_{if} ^2 \int \delta(E_a - E_1 - E_2) dn \stackrel{(17)}{\Longrightarrow}$
$a \rightarrow 1+2$	$\Gamma_{fi} = (2\pi)^4 \left T_{fi} \right ^2 \int \delta(E_a - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) \frac{d^3\vec{p}_1}{(2\pi)^3} \frac{d^3\vec{p}_2}{(2\pi)^3} \stackrel{(19b)}{\Longrightarrow}$
	$\Gamma_{fi} = \frac{(2\pi)^4}{2E_a} \left \mathcal{M}_{fi} \right ^2 \int \delta(E_a - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) \frac{d^3 \vec{p}_1}{(2\pi)^3 2E_1} \frac{d^3 \vec{p}_2}{(2\pi)^3 2E_2} \dots (20) \text{ Lorentz invariant transition rate}$
	$\boxed{\mathrm{dLIPS} = \frac{d^3 \vec{p}_1}{(2\pi)^3 2E_1} \dots \frac{d^3 \vec{p}_N}{(2\pi)^3 2E_N}} \dots (21) \stackrel{(20)}{\Longrightarrow} d\Gamma_{fi} = \frac{(2\pi)^4}{2E_a} \left \mathcal{M}_{fi} \right ^2 \int \delta(E_a - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) \mathrm{dLIPS}$
	$\Gamma_{fi} = \frac{(2\pi)^4}{2E_a} \left \mathcal{M}_{fi} \right ^2 \int \delta^4 (p_a^{\mu} - p_1^{\mu} - p_2^{\mu}) \mathrm{d}LIPS \dots (22)$
uLIF5.	$\int \delta(E_i^2 - \vec{p}_i^2 - m_i^2) dE_i = \int \delta(f(E_i)) dE_i = \int \left \frac{1}{f'(E_{root})} \right \delta(E_i - E_{root}) dE_i \text{ with } f(E_i) = E_i^2 - \vec{p}_i^2 - m^2 \text{ and } f(E_{root}) = 0 \dots (23)$
Lorentz invar.	$f(E_{root}) = 0 \stackrel{(17)}{\Longrightarrow} E_{root}^2 - \vec{p}_i^2 - m_i^2 = 0 \Longrightarrow E_{root}^2 = \vec{p}_i^2 + m_i^2 \Longrightarrow E_{root} = \sqrt{\vec{p}_i^2 + m_i^2} \dots (24) $ (23)
phase space	$f'(E_{root}) \stackrel{(23)}{=} \frac{d}{dE_l} (E_l^2 - \vec{p}_l^2 - m_l^2) \Big _{E_l = E_{root}} = 2E_l _{E_l = E_{root}} = 2E_{root} \stackrel{(24)}{\Longrightarrow} f'(E_{root}) = 2\sqrt{\vec{p}_l^2 + m_l^2} \int \stackrel{(24)}{\longrightarrow} f'$
and transi- tion rate	$\int \delta(E_i^2 - \vec{p}_i^2 - m_i^2) dE_i = \int \frac{1}{2\sqrt{\vec{p}_i^2 + m^2}} \delta(E_i - \sqrt{\vec{p}_i^2 + m_i^2}) dE_i = \frac{1}{2\sqrt{\vec{p}_i^2 + m^2_i}} \sqrt{\vec{p}_i^2 + m_i^2} = E_i \Longrightarrow \int \delta(E_i^2 - \vec{p}_i^2 - m_i^2) dE_i = \frac{1}{2E_i} \dots (25) \stackrel{(21)}{\Longrightarrow}$
with 4-	$dLIPS = \frac{1}{(2\pi)^{3N}} \delta(E_1^2 - \vec{p}_1^2 - m_1^2) \dots \delta(E_N^2 - \vec{p}_N^2 - m_N^2) dE_1 d^3 \vec{p}_1 \dots dE_N d^3 \vec{p}_N \vec{p}_i^{\mu} \vec{p}_{\mu}^{i} = E_i^2 - \vec{p}_i^2$
vectors	$dLIPS = \frac{1}{(2\pi)^{3N}} \delta\left(p_1^{\mu} p_1^{\mu} - m_1^2\right) \dots \delta\left(p_N^{\nu} p_{\nu}^N - m_N^2\right) d^4 p_1 \dots d^4 p_N \stackrel{(22)}{\Longrightarrow}$
	$\Gamma_{fi} = \frac{(2\pi)^4}{2E_a} \frac{1}{(2\pi)^6} \left \mathcal{M}_{fi} \right ^2 \int \delta^4(p_a^\mu - p_1^\mu - p_2^\mu) \delta(p_1^\mu p_\mu^1 - m_1^2) \delta(p_2^\nu p_\nu^2 - m_2^2) d^4 p_1 d^4 p_2 \dots (26) \text{ LI transition rate with 4-vectors}$
$a \rightarrow 1+2$ in center	$E_{a} = m_{a}, \vec{p}_{a} = 0 \stackrel{(20)}{\Longrightarrow} \Gamma_{fi} = \frac{(2\pi)^{4}}{2m_{a}} \left \mathcal{M}_{fi} \right ^{2} \int \delta(m_{a} - E_{1} - E_{2}) \delta^{3}(-\vec{p}_{1} - \vec{p}_{2}) \frac{d^{3}\vec{p}_{1}}{(2\pi)^{3}2E_{1}} \frac{d^{3}\vec{p}_{2}}{(2\pi)^{3}2E_{2}} \Longrightarrow$
of mass frame	$\Gamma_{fi} = \frac{p^*}{32\pi^2 m_a^2} \int \left \mathcal{M}_{fi} \right ^2 d\Omega \text{ with } p^* = \frac{1}{2m_a} \sqrt{(m_a^2 - (m_1 + m_2)^2)(m_a^2 - (m_1 - m_2)^2)} \dots (27)$

Interaction Rate and Interaction Cross-Section

Cross- section	$\sigma = \frac{\# interactions}{\# target_particles \times time}$	1 incident_flux	# interactions #target_particles×time	time•area #incident_particles	diff cr. sect.:	$\frac{d\sigma}{d\Omega}$; $d\Omega = \sin(\vartheta) d\vartheta d\varphi$	doub diff	$\frac{d^2\sigma}{d\Omega dE}$
Interaction probability and rate	$(v_a + v_b)\delta t$	•••	Interaction probabilit Interaction rate per p Total interact. rate: r with flux of particles	The second seco	$\int_{A}^{\frac{dV}{A}} \sigma = \frac{1}{a}$ $= \frac{dP}{dt} = \frac{1}{a}$ $V = n_{b}$ $= n_{a}(v_{a})$	$m_{b}(v_{a}+v_{b}) \frac{dt A}{A} \sigma = n_{b}(v_{a} + v_{b}) \frac{dt A}{A} \sigma = n_{b}(v_{a} + v_{b}) \sigma = n_{b}v\sigma$ $v\sigma n_{a}V = (n_{a}v)(n_{b}V)\sigma$ $+ v_{b}) \dots (4)$	$(+ v_b)\sigma d$ $((2)$ $= \phi_a N$	dt (1) N _b σ (3)
Lorenz invariant flux	$\Gamma_{fi} = \frac{(2\pi)^4}{4E_a E_b} \left \mathcal{M}_{fi} \right ^2 \int \delta(E_d)$ $\Gamma_{fi} = \frac{1}{4E_a E_b} \frac{1}{(2\pi)^2} \left \mathcal{M}_{fi} \right ^2 \int \sigma$ $\sigma = \frac{1}{4E_a E_b (v_a + v_b)} \frac{1}{(2\pi)^2} \left \mathcal{M}_{fi} \right ^2$	$\Gamma_{fi} = \text{rate}$ normalizing normalizing $H + E_b - E_1 + \delta(E_a + E_b - E_1)$ $\delta(E_a + E_b - E_1)$ $ ^2 \int \delta(E_a + E_b - E_1)$	$\begin{aligned} \stackrel{(3)}{=} \phi_a N_b \sigma &= \phi_a n_b V \sigma \\ \text{g wavefunctions to 1 p} \\ \text{g volume to } 1 &\Longrightarrow \Gamma_{fi} = \\ -E_2) \delta^3(\vec{p}_a + \vec{p}_b - \vec{p}_b) \\ E_1 - E_2) \delta^3(\vec{p}_a + \vec{p}_b) \\ E_b - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_b) \end{aligned}$	$ \stackrel{(4)}{=} n_a (v_a + v_b) n_b l $ earticle per Volume $ (v_a + v_b) \sigma \Longrightarrow \boxed{\sigma} $ $ \frac{1}{1 - \vec{p}_2} \frac{d^3 \vec{p}_1}{(2\pi)^3 2E_1} \frac{d^3}{(2\pi)^3} $ $ - \vec{p}_1 - \vec{p}_2) \frac{d^3 \vec{p}_1}{2E_1} \frac{d^3 \vec{p}_2}{2E_2} $ $ + \vec{p}_b - \vec{p}_1 - \vec{p}_2) \frac{d^3 \vec{p}_1}{2E_2} \frac{d^3 \vec{p}_2}{2E_2} $	$\mathcal{V}\sigma \dots (5)$ $\Rightarrow n_a = \frac{\Gamma_{fi}}{v_a + v_b}$ $\overset{p_2}{\xrightarrow{2}} \Rightarrow \overset{2}{\xrightarrow{2}} \Rightarrow \overset{p_1}{\xrightarrow{1}} \frac{d^3 \vec{p}_2}{2E_2} \dots$	$= n_b = 1 \stackrel{(5)}{\Rightarrow} \Gamma_{fi} = (v_a + \dots (7))$ (8)	v _b)Vσ	· (6)
Scattering in center- of-mass frame	Lorentz invariant flux fact $\sigma = \frac{1}{F} \frac{1}{(2\pi)^2} \left \mathcal{M}_{fi} \right ^2 \int \delta(E_a)$ $F = 4E_a^* E_b^* (v_a^* + v_b^*) = 4$ $F = 4p_l^* (E_a^* + E_b^*) \stackrel{(10)}{\Longrightarrow} \Gamma_{fi}$ $\sigma = \frac{1}{4p_l^* (E_a^* + E_b^*)} \frac{1}{(2\pi)^2} \left \mathcal{M}_{fi} \right ^2$ $\sigma = \frac{1}{4p_l^* \sqrt{\zeta}} \frac{1}{(2\pi)^2} \left \mathcal{M}_{fi} \right ^2 \int \delta(E_a)$	or: $\frac{F = 4E_a}{E_a E_b} \left(\frac{p_a^*}{E_a^*} + \frac{1}{p_a^*} \right)$ $= \frac{1}{4p_i^*(E_a^* + E_b^*)}$ $\frac{2}{\delta(E_a^* + E_b^*)}$ $(\sqrt{s} - E_1^* - 1)$	$\begin{split} \frac{E_b(v_a + v_b) = 4E}{E_2)\delta^3(\vec{p}_a + \vec{p}_b - \vec{p}_1} \\ \frac{2}{E_2}\delta^3(\vec{p}_a + \vec{p}_b - \vec{p}_1) \\ \frac{2}{E_b^*} \\ \frac{1}{E_b^*} \\ \frac{1}{(2\pi)^2} \left \mathcal{M}_{fi} \right ^2 \int \delta(E_a^* + e_b^* - E_1^* - E_2^*)\delta^3(-\vec{p}_1^* + \vec{p}_2^*) \\ \frac{2}{E_2^*} \\ \frac{2}{E_2^*} \\ \delta^3(\vec{p}_1^* + \vec{p}_2^*) \\ \frac{d^3\vec{p}_1 d^3}{2E_b^*} \\ \frac{d^3\vec{p}_1}{2E_b^*} \\ d^3\vec{$	$\begin{aligned} & aE_b(v_a + v_b) = 4 \\ & -\vec{p}_2) \frac{d^3\vec{p}_1}{2E_1} \frac{d^3\vec{p}_2}{2E_2} \dots (1) \\ & = \vec{p}_b^* = p_i^* \Longrightarrow F \\ & E_b^* - E_1^* - E_2^*) \delta^3(0) \\ & -\vec{p}_2^*) \frac{d^3\vec{p}_1}{2E_1} \frac{d^3\vec{p}_2}{2E_1} \frac{E_a^*}{2E_2} \end{aligned}$	$\frac{p_{a} \cdot p_{b}}{p_{a}} = 4E_{a}^{*}E_{a}$ $\vec{p}_{a}^{*} + \vec{p}_{b}^{*}$ $+ E_{b}^{*} \stackrel{\text{def}}{=} \cdot$ $\left \mathcal{M}_{fi}\right ^{2} d$	$\int_{0}^{2} - m_{a}^{*} m_{b}^{*} \dots (9) \Rightarrow$ $\overline{f_{b}^{*}} \left(\frac{p_{i}^{*}}{E_{a}^{*}} + \frac{p_{i}^{*}}{E_{b}^{*}} \right) = 4E_{b}^{*} p_{i}^{*} +$ $- \vec{p}_{1}^{*} - \vec{p}_{2}^{*} \right) \frac{d^{3} \vec{p}_{1}}{2E_{1}} \frac{d^{3} \vec{p}_{2}}{2E_{2}} \left \vec{p}_{a}^{*} \right $ \sqrt{s} $\Omega^{*} \Rightarrow \left \sigma = \frac{1}{64\pi^{2} s} \frac{p_{i}^{*}}{r_{a}^{*}} \int \left \mathcal{N} \right $	$4E_a^*p_i^* = -\vec{p}_b^*$ $= -\vec{p}_b^*$	⇒ * (11)

Mandelstam Variables

Klein-Gordon Equation

	$E^{2} \stackrel{c=1}{=} p^{2} + m^{2} \Longrightarrow E^{2} - p^{2} = m^{2} \Longrightarrow \hat{E}^{2} - \hat{p}^{2} = m^{2} \cdot \Psi \Longrightarrow (\hat{E}^{2} - \hat{p}^{2})\Psi = m^{2}\Psi \hat{E} = i\frac{\partial}{\partial t} \Longrightarrow \hat{E}^{2} = -\frac{\partial^{2}}{\partial t^{2}} \Longrightarrow$
Derivation of equation	$\left \left(-\frac{\partial^2}{\partial t^2} - \hat{p}^2 \right) \Psi = m^2 \Psi \middle \hat{p} = -i \vec{\nabla} \Longrightarrow \hat{p}^2 = -\vec{\nabla}^2 \Longrightarrow \left(-\frac{\partial^2}{\partial t^2} + \vec{\nabla}^2 \right) \Psi = m^2 \Psi \middle \cdot (-1) \Longrightarrow \frac{\partial^2}{\partial t^2} \Psi - \vec{\nabla}^2 \Psi = -m^2 \Psi \Longrightarrow$
	$\partial^{\mu}\partial_{\mu}\Psi = -m^{2}\Psi \Longrightarrow \partial^{\mu}\partial_{\mu}\Psi + m^{2}\Psi = 0 \Longrightarrow \boxed{\left(\partial^{\mu}\partial_{\mu} + m^{2}\right)\Psi = 0}$

Dirac Equation

Start like	$E^{2} = p^{2} + m^{2} \Longrightarrow \hat{H}_{D}^{2} = \hat{p}^{2} + m^{2} = \left(-i\vec{\nabla}\right)^{2} + m^{2} = -\vec{\nabla}^{2} + m^{2} \dots (1) \text{ Schrödinger: } i\partial_{t}\Psi = \hat{H}_{D}\Psi i\partial_{t} \cdot \Longrightarrow -\partial_{t}^{2}\Psi = i\partial_{t}(\hat{H}_{D}\Psi) \Longrightarrow (1) i\partial_{t}\Psi = \hat{H}_{D}\Psi $					
Klein Gord	$-\partial_t^2 \Psi = i(\partial_t \hat{H}_D)\Psi + i\hat{H}_D \partial_t \Psi \partial_t \hat{H}_D = 0 \Longrightarrow -\partial_t^2 \Psi = \hat{H}_D i\partial_t \Psi i\partial_t \Psi = \hat{H}_D \Psi \Longrightarrow -\partial_t^2 \Psi = \hat{H}_D^2 \Psi \stackrel{(1)}{\Longrightarrow} -\partial_t^2 \Psi = (-\vec{\nabla}^2 + m^2)\Psi \dots (2)$					
Ansatz	$\Psi(\vec{r},t) = \begin{pmatrix} \Psi_1(\vec{r},t) \\ \Psi_2(\vec{r},t) \\ \Psi_3(\vec{r},t) \\ \Psi_4(\vec{r},t) \end{pmatrix} \text{(spinor } \in \mathbb{C}^4 \text{)} \underbrace{ \text{In order to allow Lorentz-covariance, } \widehat{H}_D, \text{ in x-space, must be linear in spatial derivatives:} \\ \underbrace{\widehat{H}_D = \underline{\alpha}_i \widehat{p}_i + \underline{\beta}\underline{m} \dots (3) \text{ with } \underline{\alpha}_i \text{ and } \underline{\beta} \text{ being 4x4 matrices acting on the components of } \Psi \\ \underbrace{\Psi_1(\vec{r},t)}_{\Psi_2(\vec{r},t)} \underbrace{\Psi_2(\vec{r},t)}_{\Psi_1(\vec{r},t)} \text{(spinor } \in \mathbb{C}^4 \text{)} \underbrace{\Psi_1(\vec{r},t)}_{\Psi_2(\vec{r},t)} \underbrace{\Psi_2(\vec{r},t)}_{\Psi_2(\vec{r},t)} \underbrace{\Psi_2(\vec{r},t)} \Psi_2($					
	$(1) \Longrightarrow \hat{H}_{D}^{2} = -\vec{\nabla}^{2} + m^{2} \Longrightarrow \hat{H}_{D}^{2} = -\partial_{i}\partial_{i} + m^{2} \Longrightarrow \hat{H}_{D}^{2} = -\partial_{i}\partial_{j}\delta_{ij} + m^{2} \stackrel{(3)}{\Longrightarrow} (\underline{\alpha}_{i}\hat{p}_{i} + \underline{\beta}_{m}) (\underline{\alpha}_{j}\hat{p}_{j} + \underline{\beta}_{m}) = -\partial_{i}\partial_{j}\delta_{ij} + m^{2} \Longrightarrow \hat{H}_{D}^{2} = -\partial_{i}\partial_{j}\delta_{ij} + m^{2} $					
	$\frac{1}{i}\underline{\alpha}_{i}\partial_{i}\frac{1}{i}\underline{\alpha}_{j}\partial_{j} + \underline{\beta}\underline{m}\underline{\beta}\underline{m} + \underline{\beta}\underline{m}\frac{1}{i}\underline{\alpha}_{j}\partial_{j} + \frac{1}{i}\underline{\alpha}_{i}\partial_{i}\underline{\beta}\underline{m} = (-\partial_{i}\partial_{j}\delta_{ij} + m^{2})\mathbb{1}$					
	$-\underline{\underline{\alpha}_i \underline{\alpha}_j \partial_i \partial_j} + m^2 \underline{\underline{\beta}}^2 + \frac{1}{i} \underline{m} \underline{\underline{\beta}} \underline{\underline{\alpha}}_i \partial_i + \frac{1}{i} \underline{m} \underline{\underline{\alpha}}_i \underline{\underline{\beta}} \partial_i = (-\partial_i \partial_j \delta_{ij} + m^2) \mathbb{1}$					
Derivation	$-\underline{\underline{\alpha}}_{i}\underline{\underline{\alpha}}_{j}\partial_{i}\partial_{j} + m^{2}\underline{\underline{\beta}}^{2} - im\left(\underline{\underline{\beta}}\underline{\underline{\alpha}}_{i} + \underline{\underline{\alpha}}_{i}\underline{\underline{\beta}}\right)\partial_{i} = (-\partial_{i}\partial_{j}\delta_{ij} + m^{2})\mathbb{1}$					
of Dirac Equation	$ \text{Coefficients of } \partial_i \partial_j : \underline{\alpha}_i \underline{\alpha}_j = \delta_{ij} \mathbb{1} \begin{cases} \frac{ f ^{l=j}}{l=j} \underline{\alpha}_i \underline{\alpha}_i = \frac{1}{2} [\underline{\alpha}_i, \underline{\alpha}_i]_+ = \mathbb{1} \\ \frac{ f ^{l=j}}{l=j} \underline{\alpha}_i \underline{\alpha}_i = \mathbb{0} = \underline{\alpha}_j \underline{\alpha}_i \implies \frac{1}{2} [\underline{\alpha}_i, \underline{\alpha}_j]_+ = \mathbb{0} \end{cases} \Rightarrow \boxed{ \boxed{ \boxed{\alpha}_i, \underline{\alpha}_j \end{bmatrix}_+ = 2\delta_{ij} \mathbb{1} } \text{Clifford algebra} $					
	Coefficients of m^2 : $\underline{\underline{\beta}^2 = 1}$ solved by $\underline{\underline{\beta} = \gamma^0 = \begin{pmatrix} 1_2 & \mathbb{O}_2 \\ \mathbb{O}_2 & -1_2 \end{pmatrix}}$					
	Coefficients of $\mathbb{O}: \underline{\underline{\alpha}}_{\underline{i}} \underline{\underline{\beta}} + \underline{\underline{\beta}}_{\underline{\underline{\alpha}}_{\underline{i}}} = \left[\underline{\underline{\alpha}}_{\underline{i}}, \underline{\underline{\beta}}\right]_{+} = \mathbb{O}$ solved by $\alpha_i = \begin{pmatrix} \mathbb{O}_2 & \sigma_i \\ \sigma_i & \mathbb{O}_2 \end{pmatrix}$ with $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$					
Free particle Dirac Equa- tion with y	$i\partial_t \Psi = \hat{H}_D \Psi \stackrel{(3)}{\Rightarrow} i\partial_t \Psi = \left(\underline{\underline{\alpha}}_i \hat{p}_i + \underline{\underline{\beta}}_m\right) \Psi \Big \hat{p}_i = \frac{1}{i} \partial_i \Longrightarrow i\partial_t \Psi = \left(\frac{1}{i} \underline{\underline{\alpha}}_i \partial_i + \underline{\underline{\beta}}_m\right) \Psi \Longrightarrow i\partial_t \Psi - \frac{1}{i} \underline{\underline{\alpha}}_i \partial_i \Psi - \underline{\underline{\beta}}_m \Psi = 0 \Longrightarrow$					
	$i\partial_t \Psi + i\underline{\alpha}_i \partial_i \Psi - \underline{\beta}_i m \Psi = 0 \left \underline{\beta} \cdot \Longrightarrow i\underline{\beta}_i \partial_t \Psi + i\underline{\beta}_{\underline{\alpha}_i} \partial_i \Psi - \underline{\beta}^2 m \Psi = 0 \right \left \underline{\beta} \stackrel{\text{\tiny def}}{=} \gamma^0, \underline{\beta}_{\underline{\alpha}_i} = \gamma^i, \underline{\beta}^2 = 1 \right $					
Matrices	$i\gamma^{0}\partial_{0}\Psi + i\gamma^{i}\partial_{i}\Psi - \mathbb{1}m\Psi = 0 \gamma^{\mu} = (\gamma^{0}, \gamma^{i})^{T} \Longrightarrow \boxed{(i\gamma^{\mu}\partial_{\mu} - m)\Psi = 0} \Longrightarrow \boxed{(i\partial - m)\Psi = 0 \text{ with } \partial \stackrel{\text{\tiny def}}{=} \gamma^{\mu}\partial_{\mu}, m \dots \text{ rest mass}}$					

Properties of Gamma Matrices γ^{μ}

Gamma Matrices	$\gamma^{0} \stackrel{\text{def}}{=} \underline{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \\ \gamma^{1} \stackrel{\text{def}}{=} \underline{\beta}\underline{\alpha}_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \\ \gamma^{2} \stackrel{\text{def}}{=} \underline{\beta}\underline{\alpha}_{2} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} $ Clifford algebra
(Dirac represent- tation)	$\gamma^{3} \stackrel{\text{def}}{=} \underline{\beta} \underline{\alpha}_{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \gamma^{5} \stackrel{\text{def}}{=} i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} (\gamma^{0})^{2} = \underline{\beta}^{2} = 1 & [\gamma^{\mu}, \gamma^{\nu}]_{+} = 2g^{\mu\nu}\mathbb{1} \\ (\gamma^{1})^{2} = -\mathbb{1} & (\gamma^{5})^{2} = \mathbb{1} \\ \gamma^{0} = (\gamma^{0})^{-1} = \gamma^{0} & \gamma^{5} = (\gamma^{5})^{-1} = \gamma^{5} \\ \gamma^{0} \gamma^{2} = -\gamma^{2}\gamma^{0} \\ (\gamma^{1})^{2} = -\gamma^{i} & \gamma^{5}\gamma^{\mu} = -\gamma^{\mu}\gamma^{5} & \gamma^{0}\gamma^{2} = -\gamma^{2}\gamma^{0} \\ \gamma^{0}\gamma^{3} = -\gamma^{3}\gamma^{0} \end{pmatrix}$
Proof $(\gamma^i)^2 = -1$	$ (\gamma^{i})^{2} = \underline{\beta}\underline{\alpha}_{i}\underline{\beta}\underline{\alpha}_{i} = (\underline{\beta}\underline{\alpha}_{i} + \underline{\alpha}_{i}\underline{\beta} - \underline{\alpha}_{i}\underline{\beta})\underline{\beta}\underline{\alpha}_{i} = ([\underline{\beta},\underline{\alpha}_{i}]_{+} - \underline{\alpha}_{i}\underline{\beta})\underline{\beta}\underline{\alpha}_{k} [\underline{\beta},\underline{\alpha}_{i}]_{+} = 0 \Rightarrow $ $ (\gamma^{i})^{2} = -\underline{\alpha}_{i}\underline{\beta}\underline{\beta}\underline{\beta}\underline{\alpha}_{i} \underline{\beta}\underline{\beta} = \underline{\beta}^{2} = 1 \Rightarrow (\gamma^{i})^{2} = -\underline{\alpha}_{i}\underline{\alpha}_{i} \underline{\alpha}_{i}\underline{\alpha}_{i} = 1 \Rightarrow (\gamma^{i})^{2} = -1 $ $ \text{Proof } \gamma^{0} (\gamma^{0})^{\dagger} = \underline{\beta}^{\dagger} = \underline{\beta} \Rightarrow $ $ \text{hermitian} (\gamma^{0})^{\dagger} = \overline{\gamma}^{0} $
Proof γ ⁱ anti hermitian	$(\gamma^{i})^{\dagger} = \left(\underline{\beta}\underline{\alpha}_{i}\right)^{\dagger} = \underline{\alpha}_{i}^{*}\underline{\beta}^{\dagger} = \underline{\alpha}_{i}\underline{\beta} = \underline{\alpha}_{i}\underline{\beta} + \underline{\beta}\underline{\alpha}_{i} - \underline{\beta}\underline{\alpha}_{i} = \left[\underline{\alpha}_{i},\underline{\beta}\right]_{+} - \underline{\beta}\underline{\alpha}_{i} \left \left[\underline{\alpha}_{i},\underline{\beta}\right]_{+} = 0 \Longrightarrow \underline{\alpha}_{i}\underline{\beta} = -\underline{\beta}\underline{\alpha}_{i} \right \left[(\gamma^{i})^{\dagger} = -\underline{\beta}\underline{\alpha}_{i} = -\gamma^{i}\right]$
$\underline{\underline{\alpha}}_{i}^{2}, \underline{\underline{\beta}}^{2}$	$\underline{a}_{i}^{2} = \underline{\beta}^{2} = \mathbb{1} \Longrightarrow \text{Eigenvalues} = \pm 1 (\gamma^{i})^{2} = -\mathbb{1} \Longrightarrow \text{Eigenvalues} = \pm i \text{tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu}$
tracelessness	$\underline{\alpha}_{i} = \underline{1}\underline{\alpha}_{i} = \underline{\beta}\underline{\beta}\underline{\alpha}_{i} = -\underline{\beta}\underline{\alpha}_{i}\underline{\beta} \Longrightarrow \operatorname{tr}(\underline{\alpha}_{i}) = \operatorname{tr}\left(-\underline{\beta}\underline{\alpha}_{i}\underline{\beta}\right) = \operatorname{tr}\left(-\underline{\alpha}_{i}\underline{\beta}\underline{\beta}\right) = \operatorname{tr}\left(-\underline{\alpha}_{i}\right) \Longrightarrow \underbrace{\operatorname{tr}(\underline{\alpha}_{i}) = 0} \operatorname{tr}(\underline{\beta}\underline{\beta}) = 0$
Repr. with Pauli matr.:	$\underline{\underline{\alpha}}_{i} = \begin{pmatrix} \mathbb{O}_{2} & \sigma_{i} \\ \sigma_{i} & \mathbb{O}_{2} \end{pmatrix}, \underline{\underline{\beta}} = \begin{pmatrix} \mathbb{1}_{2} & \mathbb{O}_{2} \\ \mathbb{O}_{2} & -\mathbb{1}_{2} \end{pmatrix}, \gamma^{i} = \underline{\underline{\beta}}\underline{\underline{\alpha}}_{i} = \begin{pmatrix} \mathbb{O}_{2} & \sigma_{i} \\ -\sigma_{i} & \mathbb{O}_{2} \end{pmatrix}$

Probabiliy Density of Dirac Equation

Adjoint Dirac equation	$ \begin{aligned} \left(i\gamma^{\mu}\partial_{\mu} - m \right) \Psi &= 0 \Big ^{\dagger} \Longrightarrow \Psi^{\dagger} \Big(-i(\gamma^{\mu})^{\dagger} \stackrel{\leftarrow}{\rightarrow} \partial_{\mu} - m \Big) = 0 \Big (\gamma^{\mu})^{\dagger} = \gamma^{0}\gamma^{\mu}\gamma^{0} \Longrightarrow \Psi^{\dagger} \Big(-i(\gamma^{0}\gamma^{\mu}\gamma^{0}) \stackrel{\leftarrow}{\rightarrow} \partial_{\mu} - m\gamma^{0}\gamma^{0} \Big) = 0 \Longrightarrow \\ \Psi^{\dagger}\gamma^{0} \Big(-i\gamma^{\mu} \stackrel{\leftarrow}{\rightarrow} \partial_{\mu} - m \Big) \gamma^{0} = 0 \Big \Psi^{\dagger}\gamma^{0} \stackrel{\text{def}}{=} \overline{\Psi} \Longrightarrow \overline{\Psi} \Big(-i\gamma^{\mu} \stackrel{\leftarrow}{\rightarrow} \partial_{\mu} - m \Big) = 0 \Big \cdot (-1) \Longrightarrow \overline{\Psi} \Big(i\gamma^{\mu} \stackrel{\leftarrow}{\rightarrow} \partial_{\mu} + m \Big) = 0 \Big \gamma^{\mu} \stackrel{\leftarrow}{\rightarrow} \partial_{\mu} \stackrel{\text{def}}{=} \overline{\Psi} \Big \gamma^{0} \Big \psi^{\dagger}\gamma^{0} \Big = 0 \end{aligned} $
continuity equation	Dirac: $(i\partial - m)\Psi = 0 \overline{\Psi} \cdot \Rightarrow \overline{\Psi}(i\partial - m)\Psi = 0 \dots (1)$, adjoint Dirac: $\overline{\Psi}(i^{\leftarrow}\partial + m) = 0 \cdot\Psi \Rightarrow \overline{\Psi}(i^{\leftarrow}\partial + m)\Psi = 0 \dots (2)$ (2) + (1) $\Rightarrow i\overline{\Psi}^{\leftarrow}\partial\Psi + \overline{\Psi}_{m}\Psi + i\overline{\Psi}\partial\Psi - \overline{\Psi}_{m}\Psi = 0 \cdot i \Rightarrow \overline{\Psi}(\stackrel{\leftarrow}{}\partial + \partial)\Psi = 0 \Rightarrow \overline{\Psi}(\chi^{\mu} \stackrel{\leftarrow}{}\partial + \chi^{\mu}\partial)\Psi = 0 \Rightarrow$
	$(\overline{\Psi}\gamma^{\mu})^{\leftarrow}\partial_{\mu}\Psi + \overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi = 0 (\overline{\Psi}\gamma^{\mu})^{\leftarrow}\partial_{\mu} = \gamma^{\mu}\overline{\Psi}^{\leftarrow}\partial_{\mu} = \partial_{\mu}\overline{\Psi}\gamma^{\mu} \Longrightarrow \partial_{\mu}\overline{\Psi}\gamma^{\mu}\Psi + \overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi = 0 \Longrightarrow \boxed{\partial_{\mu}(\overline{\Psi}\gamma^{\mu}\Psi) = \partial_{\mu}j^{\mu} = 0}$
Probability density	$\rho = j^{0} = \overline{\Psi}\gamma^{0}\Psi = \Psi^{\dagger}\gamma^{0}\gamma^{0}\Psi = \Psi^{\dagger}\mathbb{1}\Psi = \Psi^{\dagger}\Psi \Longrightarrow \boxed{\rho = \sum_{\alpha=1}^{4}\Psi_{\alpha}^{\dagger}\Psi_{\alpha} \ge 0} \dots \text{ positive definite} \qquad \boxed{j^{\mu} = \overline{\Psi}\gamma^{\mu}\Psi = \Psi^{\dagger}\gamma^{0}\gamma^{\mu}\Psi}$

Covariant Solutions of Dirac Equation

Free Particle	Ansatz: Free particle, plane wave: $\Psi = U(E, \vec{p}) e^{i(\vec{p}\cdot\vec{x}-Et)} = U(E, \vec{p}) e^{-ip^{\nu}x_{\nu}} \dots (1)$ with $U(E, \vec{p})$ being a 4-component spinor
Plane Wave Solution to	$(i\gamma^{\mu}\partial_{\mu} - m)\Psi = 0 \stackrel{(1)}{\longrightarrow} (i\gamma^{\mu}\partial_{\mu} - m)(U(E,\vec{p})e^{-ip^{\nu}x_{\nu}}) = 0 \Longrightarrow i\gamma^{\mu}\partial_{\mu}(U(E,\vec{p})e^{-ip^{\nu}x_{\nu}}) - mU(E,\vec{p})e^{-ip^{\nu}x_{\nu}} = 0 \Longrightarrow$
Dirac Equation	$i\gamma^{\mu} U(E,p) \partial_{\mu} e^{-ip \cdot x_{\nu}} - m U(E,p) e^{-ip \cdot x_{\nu}} = 0 \implies i\gamma^{\mu} U(E,p) (-ip \cdot) \partial_{\mu} x_{\nu} e^{-ip \cdot x_{\nu}} - m U(E,p) e^{-ip \cdot x_{\nu}} = 0 \implies v^{\mu} \Pi(F,\vec{n}) n^{\nu} n_{\nu} = 0 \implies (\gamma^{\mu} \Pi(F,\vec{n}) - m \Pi(F,\vec{n}) = 0 \implies (\gamma^{\mu} \Pi(F,\vec{n}) - m \Pi(F,\vec{n}) = 0 \implies (\gamma^{\mu} \Pi(F,\vec{n}) = 0 \implies (\gamma^{\mu}$
Special	$p_{\mu} = (E, \vec{0}) \stackrel{(2)}{\Rightarrow} (\gamma^{0}E - m) U(E, \vec{p}) = 0 \Rightarrow \gamma^{0}EU = mU \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} E \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{pmatrix} = m \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{pmatrix} \Rightarrow \begin{pmatrix} Eu_{1} \\ Eu_{2} \\ -Eu_{3} \\ -Eu_{4} \end{pmatrix} = \begin{pmatrix} mu_{1} \\ mu_{2} \\ mu_{3} \\ mu_{4} \end{pmatrix}$
Particle at Rest	$\underbrace{U_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, U_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ E = -m}}_{E = -m}, \underbrace{U_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ E = -m} \\ \underbrace{U_{1} = N \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
	$p_{\mu} = (E, -\vec{p}) \stackrel{(2)}{\Rightarrow} \left(\gamma^{0}E - \gamma^{1}p_{x} - \gamma^{2}p_{y} - \gamma^{3}p_{z} - m\right) U(E, \vec{p}) = 0 \Longrightarrow \left(\underline{\beta}E - \underline{\beta}\alpha_{x}p_{x} - \underline{\beta}\alpha_{y}p_{y} - \underline{\beta}\alpha_{z}p_{z} - m\right) U(E, \vec{p}) = 0 \Longrightarrow$
	$\begin{bmatrix} \begin{pmatrix} \mathbf{n} & \mathbf{w} \\ 0 & -1 \end{pmatrix} E - \begin{pmatrix} \mathbf{n} & \mathbf{w} \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{v} & \mathbf{o}_x \\ \sigma_x & 0 \end{pmatrix} p_x - \begin{pmatrix} \mathbf{n} & \mathbf{w} \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{v} & \mathbf{v} \\ \sigma_y & 0 \end{pmatrix} p_y - \begin{pmatrix} \mathbf{n} & \mathbf{w} \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{v} & \mathbf{v} \\ \sigma_z & 0 \end{pmatrix} p_z - \begin{pmatrix} \mathbf{n} & \mathbf{w} \\ 0 & 1 \end{pmatrix} m \end{bmatrix} \mathbf{U}(E, \vec{p}) = 0 \Longrightarrow$
	$\begin{bmatrix} (\mathbb{Q} & -1)^{E} - (-\sigma_{x} & \mathbb{Q})^{p_{x}} - (-\sigma_{y} & \mathbb{Q})^{p_{y}} - (-\sigma_{z} & \mathbb{Q})^{p_{z}} - (\mathbb{Q} & 1)^{m} \end{bmatrix} \cup (E, p) = 0 \Longrightarrow$ $\begin{bmatrix} (\mathbb{1} & \mathbb{Q})_{E} + (\mathbb{Q} & -\sigma_{x}p_{x})_{E} + (\mathbb{Q} & -\sigma_{y}p_{y})_{E} + (\mathbb{Q} & -\sigma_{z}p_{z})_{E} - (\mathbb{1} & \mathbb{Q})_{E} \end{bmatrix} u(E, \vec{p}) = 0 \Longrightarrow$
General Free	$\begin{bmatrix} (\mathbb{U} & -\mathbb{I})^{\prime} & (\sigma_{x}p_{x} & \mathbb{U}^{\prime})^{\prime} & (\sigma_{y}p_{y} & \mathbb{U}^{\prime})^{\prime} & (\sigma_{z}p_{z} & \mathbb{U}^{\prime})^{\prime} & (\mathbb{U} & \mathbb{I}^{\prime} & \mathbb{I}^{\prime} & \mathbb{I}^{\prime} \\ \begin{bmatrix} (\mathbb{1} & \mathbb{U}) \\ \mathbb{U} & -\mathbb{I} \end{bmatrix}^{\prime} E + \begin{pmatrix} \mathbb{U} & -\sigma_{x}p_{x} - \sigma_{y}p_{y} - \sigma_{z}p_{z} \\ \sigma_{x}p_{x} + \sigma_{y}p_{y} + \sigma_{z}p_{z} & \mathbb{U} \end{pmatrix} - \begin{pmatrix} \mathbb{1} & \mathbb{U} \\ \mathbb{U} & \mathbb{I} \end{pmatrix}^{\prime} m \end{bmatrix} U(E, \vec{p}) = 0 \Longrightarrow$
Particle Plane Wave	$\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} E + \begin{pmatrix} 0 & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} m \end{bmatrix} U(E, \vec{p}) = 0 \Longrightarrow \begin{pmatrix} E - m & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -E - m \end{pmatrix} U = 0 \middle U \stackrel{\text{def}}{=} \begin{pmatrix} U_A \\ U_B \end{pmatrix} \Longrightarrow$
Solution	$ \begin{pmatrix} E - m & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -(E+m) \end{pmatrix} \begin{pmatrix} U_A \\ U_B \end{pmatrix} = 0 \Longrightarrow \begin{pmatrix} E - m \end{pmatrix} U_A - (\vec{\sigma} \cdot \vec{p}) U_B = 0 \\ (\vec{\sigma} \cdot \vec{p}) U_A - (E+m) U_B = 0 \end{cases} \xrightarrow{U_A = \frac{\sigma \cdot p}{E-m}} U_B \\ U_B = \frac{\vec{\sigma} \cdot \vec{p}}{E+m} U_A \end{pmatrix} \dots (3) $
	$\vec{\sigma} \cdot \vec{p} = \sigma_x p_x + \sigma_y p_y + \sigma_z p_z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} p_x + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} p_y + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} p_z = \begin{pmatrix} p_x - ip_y \\ p_x + ip_y & -p_z \end{pmatrix} \stackrel{(3)}{\Rightarrow}$
	$U_A = \begin{pmatrix} \frac{p_z}{E-m} & \frac{p_x - ip_y}{E-m} \\ \frac{p_x + ip_y}{E-m} & \frac{-p_z}{E-m} \end{pmatrix} U_B \dots (4a), U_B = \begin{pmatrix} \frac{p_z}{E+m} & \frac{p_x - ip_y}{E+m} \\ \frac{p_x + ip_y}{E+m} & \frac{-p_z}{E+m} \end{pmatrix} U_A \dots (4b)$
	$\dots \text{Ansatz } U_A = \begin{pmatrix} 1\\ 0 \end{pmatrix} \stackrel{(4b)}{\Longrightarrow} U_B = \begin{pmatrix} \frac{p_z}{E+m} & \frac{p_x - ip_y}{E+m} \\ \frac{p_x + ip_y}{E+m} & \frac{-p_z}{E+m} \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \end{pmatrix} \Longrightarrow U_1 \stackrel{\text{def}}{=} N_1 \begin{pmatrix} U_A \\ U_B \end{pmatrix} = N_1 \begin{pmatrix} 1\\ 0 \\ \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \end{pmatrix} $ solutions for $E > 0$
	$\dots \text{Ansatz } U_A = \begin{pmatrix} 0\\1 \end{pmatrix} \stackrel{(4b)}{\longrightarrow} U_B = \begin{pmatrix} \frac{p_z}{E+m} & \frac{p_x - ip_y}{E+m} \\ \frac{p_x + ip_y}{E+m} & \frac{-p_z}{E+m} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \frac{p_x - ip_y}{E+m} \\ \frac{-p_z}{E+m} \end{pmatrix} \Longrightarrow U_2 \stackrel{\text{def}}{=} N_2 \begin{pmatrix} U_A \\ U_B \end{pmatrix} = N_2 \begin{pmatrix} 0\\1 \\ \frac{p_x - ip_y}{E+m} \\ \frac{-p_z}{E+m} \end{pmatrix} \end{pmatrix}$
	$\dots \text{Ansatz } U_B = \begin{pmatrix} 1\\ 0 \end{pmatrix} \stackrel{(4a)}{\Longrightarrow} U_A = \begin{pmatrix} \frac{p_z}{E-m} & \frac{p_x - ip_y}{E-m} \\ \frac{p_x + ip_y}{E-m} & \frac{-p_z}{E-m} \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{p_z}{E-m} \\ \frac{p_x + ip_y}{E-m} \end{pmatrix} \Longrightarrow U_3 \stackrel{\text{def}}{=} N_3 \begin{pmatrix} U_A \\ U_B \end{pmatrix} = N_3 \begin{pmatrix} \frac{p_z}{E-m} \\ \frac{p_x + ip_y}{E-m} \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} \text{ solutions for } E < 0$
	$\dots \text{Ansatz } U_B = \begin{pmatrix} 0\\1 \end{pmatrix} \stackrel{(4a)}{\Longrightarrow} U_A = \begin{pmatrix} \frac{p_z}{E-m} & \frac{p_x - ip_y}{E-m} \\ \frac{p_x + ip_y}{E-m} & \frac{-p_z}{E-m} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \frac{p_x - ip_y}{E-m} \\ \frac{-p_z}{E-m} \end{pmatrix} \Longrightarrow U_4 \stackrel{\text{def}}{=} N_4 \begin{pmatrix} U_A \\ U_B \end{pmatrix} = N_4 \begin{pmatrix} \frac{p_x - ip_y}{E-m} \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \qquad (\text{anti - particles})$
Normali- zation	$\begin{split} & U_1^{\dagger}U_1 \stackrel{!}{=} 2E \Longrightarrow N_1 ^2 \left(1 + \frac{p_z^2}{(E+m)^2} + \frac{p_x^2 + p_y^2}{(E+m)^2}\right) = N_1 ^2 \frac{(E+m)^2 + p_z^2 + p_y^2 + p_y^2}{(E+m)^2} = N_1 ^2 \frac{E^2 + 2Em + m^2 + \vec{p}^2}{(E+m)^2} \stackrel{!}{=} 2E \left \vec{p}^2 = E^2 - m^2 \Longrightarrow \\ & N_1 ^2 \frac{E^2 + 2Em + m^2 + E^2 - m^2}{(E+m)^2} = N_1 ^2 \frac{2E(E+m)}{(E+m)^2} = N_1 ^2 \frac{2E(E+m)}{(E+m)^2} = N_1 ^2 \frac{2E(E+m)}{(E+m)^2} = 2E \Longrightarrow \frac{ N_1 - \sqrt{E+m} - N_2}{N_1 - \sqrt{E+m} - N_2} \end{split}$
Used Particle Solutions	From above, we only use U_1 and U_2 (the particle solutions): $U_1 = \sqrt{E+m} \begin{pmatrix} 1\\ 0\\ \frac{p_z}{E+m}\\ \frac{p_x+ip_y}{E+m} \end{pmatrix}$ and $U_2 = \sqrt{E+m} \begin{pmatrix} 0\\ 1\\ \frac{p_x-ip_y}{E+m}\\ \frac{-p_z}{E+m} \end{pmatrix}$
Dirac Sea	Historic interpretation: In the empty vacuum all negative energy states are filled up (Dirac-sea). Holes in the Dirac sea (e.g. created by photons) are anti-particles.
Feynmann- Stückelberg	Modern interpretation: Solutions with negative energy can be seen as particles with negative energy moving backwards in time. This corresponds to an anti-particle moving forward in time. $time \uparrow \bigcup_{E < 0} \bigoplus_{E < 0} $

Anti-Particle Solutions

Motivation	In principle, we can calculate anti-particles with spinors U_3 and U_4 . But we need to use the negative value of the physical energy. Also, because U_3 and U_4 are propagating backwards in time, the momentum is the negative physical momentum. It is					
	more convenient to write spinors in terms of physical momentum and physical energy $E = + \left \sqrt{\vec{p}^2 + m^2} \right $					
Free Anti- Particle Plane Wave Solution to Dirac Equation	$ \begin{array}{l} (1) \Rightarrow \left(i\gamma^{\mu}\partial_{\mu} - m\right)\Psi = 0 \\ [\text{New ansatz, reversing signs of } E \text{ and } \vec{p} \colon \Psi = V(E, \vec{p}) \ e^{-i(\vec{p}\cdot\vec{x} - Et)} \\ (i\gamma^{\mu}\partial_{\mu} - m) \left(V(E, \vec{p}) \ e^{-i(\vec{p}\cdot\vec{x} - Et)} \right) = 0 \Rightarrow i\gamma^{\mu}\partial_{\mu} \left(V(E, \vec{p}) \ e^{-i(\vec{p}\cdot\vec{x} - Et)} \right) - m V(E, \vec{p}) \ e^{-i(\vec{p}\cdot\vec{x} - Et)} = 0 \Rightarrow \\ i\gamma^{\mu} V(E, \vec{p}) \ \partial_{\mu} e^{-i(\vec{p}\cdot\vec{x} - Et)} - m V(E, \vec{p}) \ e^{-i(\vec{p}\cdot\vec{x} - Et)} = 0 \Rightarrow \\ (i\gamma^{0}\partial_{t} + i\gamma^{1}\partial_{x} + i\gamma^{2}\partial_{y} + i\gamma^{3}\partial_{z}) (V(E, \vec{p}) \ e^{-ip_{x}x - ip_{y}y - ip_{z}z + iEt}) - m Ue^{-i(\vec{p}\cdot\vec{x} - Et)} = 0 \Rightarrow \\ (i\gamma^{0}iE - i\gamma^{1}ip_{x} - i\gamma^{2}ip_{y} - i\gamma^{3}ip_{z}) (V(E, \vec{p}) \ e^{-i(\vec{p}\cdot\vec{x} - Et)}) - m V(E, \vec{p}) \ e^{-i(\vec{p}\cdot\vec{x} - Et)} = 0 \Rightarrow \\ (-\gamma^{0}E + \gamma^{1}p_{x} + \gamma^{2}p_{y} + \gamma^{3}p_{z} - m) V(E, \vec{p}) = 0 \cdot (-1) \Rightarrow \\ \left(\gamma^{0}E - \gamma^{1}p_{x} - \gamma^{2}p_{y} - \gamma^{3}p_{z} + m\right) V(E, \vec{p}) = 0 \Rightarrow \boxed{\left(\gamma^{\mu}p_{\mu} + m\right) V(E, \vec{p}) = 0} \dots (5) $					
General Free Particle Plane Wave Solution	$\begin{split} p_{\mu} &= \begin{pmatrix} E \\ -\vec{p} \end{pmatrix} \stackrel{(5)}{\Rightarrow} \begin{pmatrix} \gamma^{0}E - \gamma^{1}p_{x} - \gamma^{2}p_{y} - \gamma^{3}p_{z} + m \end{pmatrix} V(E, \vec{p}) = 0 \Rightarrow \begin{pmatrix} \vec{p}E - \vec{p}\alpha_{x}p_{x} - \vec{p}\alpha_{y}p_{y} - \vec{p}\alpha_{z}p_{z} + m \end{pmatrix} V(E, \vec{p}) = 0 \Rightarrow \\ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} E - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & \sigma_{x} \\ \sigma_{x} & 0 \end{pmatrix} p_{x} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & \sigma_{y} \\ \sigma_{y} & 0 \end{pmatrix} p_{y} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & \sigma_{z} \\ \sigma_{z} & 0 \end{pmatrix} p_{z} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} m \end{bmatrix} V(E, \vec{p}) = 0 \Rightarrow \\ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} E - \begin{pmatrix} 0 & \sigma_{x} \\ \sigma_{x} & 0 \end{pmatrix} p_{x} - \begin{pmatrix} 0 & \sigma_{y} \\ -\sigma_{y} & 0 \end{pmatrix} p_{y} - \begin{pmatrix} 0 & \sigma_{z} \\ \sigma_{z} & 0 \end{pmatrix} p_{z} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} m \end{bmatrix} V(E, \vec{p}) = 0 \Rightarrow \\ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} E + \begin{pmatrix} 0 & -\sigma_{x}p_{x} \\ \sigma_{x}p_{x} & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\sigma_{y}p_{y} \\ \sigma_{y}p_{y} & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\sigma_{z}p_{z} \\ \sigma_{z}p_{z} & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} m \end{bmatrix} V(E, \vec{p}) = 0 \Rightarrow \\ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} E + \begin{pmatrix} 0 & -\sigma_{x}p_{x} + \sigma_{y}p_{y} + \sigma_{z}p_{z} \\ \sigma_{z}p_{z} & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} m \end{bmatrix} V(E, \vec{p}) = 0 \Rightarrow \\ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} E + \begin{pmatrix} 0 & -\sigma_{x}, p_{x} + \sigma_{y}p_{y} + \sigma_{z}p_{z} \\ \sigma_{x}p_{x} - \sigma_{y}p_{y} - \sigma_{z}p_{z} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} m \end{bmatrix} V(E, \vec{p}) = 0 \Rightarrow \\ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} E + \begin{pmatrix} 0 & -\sigma_{x}, p_{x} + \sigma_{y}p_{y} + \sigma_{z}p_{z} \\ \sigma_{z}, p_{z} - \sigma_{z}p_{z} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} m \end{bmatrix} V(E, \vec{p}) = 0 \Rightarrow \\ \begin{bmatrix} E + m & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -(E - m) \end{pmatrix} \begin{pmatrix} V_{A} \\ V_{B} \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} E + m V_{A} - (\vec{\sigma} \cdot \vec{p}) V_{B} = 0 \\ \vec{\sigma} \cdot \vec{p} \cdot (E - m) V_{B} = 0 \end{pmatrix} \begin{pmatrix} e^{-\vec{p}} \frac{\vec{\sigma} \cdot \vec{p}}{F - m} V_{A} \end{pmatrix} \dots (6) \\ \vec{\sigma} \cdot \vec{p} - (E - m) \end{pmatrix} \begin{pmatrix} V_{A} \\ V_{B} \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} \frac{p_{x}}{F + m} \frac{\vec{p}_{x} - ip_{y}}{F - m} \frac{\vec{p}_{x}}{F - m} \end{pmatrix} \begin{pmatrix} V_{A} \\ V_{B} \end{pmatrix} \dots (7a), V_{B} = \begin{pmatrix} \frac{p_{x}}{F - m} \frac{p_{x} - ip_{y}}{F - m} \\ \frac{p_{x} + ip_{y}}{F - m} \end{pmatrix} V_{A} \dots (7b) \\ \end{pmatrix}$					
	$ \operatorname{Ansatz} V_{B} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{(7a)}{\Longrightarrow} V_{A} = \begin{pmatrix} \frac{p_{z}}{E+m} & \frac{p_{x}-ip_{y}}{E+m} \\ \frac{p_{x}+ip_{y}}{E+m} & \frac{-p_{z}}{E+m} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{p_{x}-ip_{y}}{E+m} \\ \frac{-p_{z}}{E+m} \end{pmatrix} \Longrightarrow V_{1} \stackrel{\text{def}}{=} N_{1} \begin{pmatrix} V_{A} \\ V_{B} \end{pmatrix} = N_{1} \begin{pmatrix} \frac{p_{x}-ip_{y}}{E+m} \\ \frac{-p_{z}}{E+m} \\ 0 \\ 1 \end{pmatrix} $ solutions for $E > 0$ (anti - particles) $ \operatorname{Ansatz} V_{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \stackrel{(7a)}{\Longrightarrow} V_{A} = \begin{pmatrix} \frac{p_{x}}{E+m} & \frac{p_{x}-ip_{y}}{E+m} \\ \frac{p_{x}+ip_{y}}{E+m} & \frac{-p_{z}}{E+m} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{p_{z}}{E+m} \\ \frac{p_{x}+ip_{y}}{E+m} \end{pmatrix} \Longrightarrow V_{2} \stackrel{\text{def}}{=} N_{2} \begin{pmatrix} V_{A} \\ V_{B} \end{pmatrix} = N_{2} \begin{pmatrix} \frac{p_{x}}{E+m} \\ \frac{p_{x}+ip_{y}}{E+m} \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} $					
	$ \operatorname{Ansatz} V_{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \stackrel{(7b)}{\Longrightarrow} V_{B} = \begin{pmatrix} \frac{p_{z}}{E-m} & \frac{p_{x} \cdot ip_{y}}{E-m} \\ \frac{p_{x} + ip_{y}}{E-m} & \frac{-p_{z}}{E-m} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{p_{z}}{E-m} \\ \frac{p_{x} + ip_{y}}{E-m} \end{pmatrix} \Longrightarrow V_{3} \stackrel{\text{def}}{=} N_{3} \begin{pmatrix} V_{A} \\ V_{B} \end{pmatrix} = N_{3} \begin{pmatrix} 0 \\ \frac{p_{z}}{E-m} \\ \frac{p_{x} + ip_{y}}{E-m} \end{pmatrix} $ solutions for $E < 0$ (particles) $ \operatorname{Ansatz} V_{A} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{(7b)}{\Longrightarrow} V_{B} = \begin{pmatrix} \frac{p_{z}}{E-m} & \frac{p_{x} - ip_{y}}{E-m} \\ \frac{p_{x} + ip_{y}}{E-m} & \frac{-p_{z}}{E-m} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{p_{z}}{E-m} & \frac{p_{x} - ip_{y}}{E-m} \\ \frac{-p_{z}}{E-m} \end{pmatrix} \Longrightarrow V_{4} \stackrel{\text{def}}{=} N_{4} \begin{pmatrix} V_{A} \\ V_{B} \end{pmatrix} = N_{4} \begin{pmatrix} 0 \\ 1 \\ \frac{p_{x} - ip_{y}}{E-m} \\ \frac{-p_{z}}{E-m} \end{pmatrix} $					
Used Anti- Particle Solutions	We use only V_1 and V_2 (anti-particle solutions): $V_1 = \sqrt{E+m} \begin{pmatrix} \frac{p_x - ip_y}{E+m} \\ 0 \\ 1 \end{pmatrix}$ and $V_2 = \sqrt{E+m} \begin{pmatrix} \frac{p_x - ip_y}{E+m} \\ \frac{p_x + ip_y}{E+m} \\ 1 \\ 0 \end{pmatrix}$					

Spin and Dirac Equation

Motivation	In non-relativistic QM the Hamiltonian of a free particle commutes with the angular momentum operator: $[\hat{H}, \hat{L}] = 0$. In relativistic QM it does <u>not</u> commute: $[\hat{H}_D, \hat{L}] = -i\vec{\alpha} \times \vec{p} \implies$ Angular momentum \vec{L} is not conserved!			
Spin	Ansatz: We introduce a new operator \hat{S} $\hat{S} = \frac{1}{2} \hat{\Sigma} = \frac{1}{2} \begin{pmatrix} \vec{\sigma} & \vec{0} \\ \vec{0} & \vec{\sigma} \end{pmatrix} \Rightarrow \hat{S}_x = \frac{1}{2} \begin{pmatrix} \sigma_x & 0 \\ 0 & \sigma_x \end{pmatrix}, \hat{S}_y = \frac{1}{2} \begin{pmatrix} \sigma_y & 0 \\ 0 & \sigma_y \end{pmatrix}, \hat{S}_z = \frac{1}{2} \begin{pmatrix} \sigma_z & 0 \\ 0 & \sigma_z \end{pmatrix} \Rightarrow \begin{bmatrix} \hat{H}_D, \hat{S} \end{bmatrix} = i\vec{\alpha} \times \vec{p}$			
Tot ang mom	$\hat{f} = \hat{L} + \hat{S} \Longrightarrow \left[\hat{H}_D, \hat{f}\right] = \left[\hat{H}_D, \hat{L} + \hat{S}\right] = \left[\hat{H}_D, \hat{L}\right] + \left[\hat{H}_D, \hat{S}\right] = -i\vec{\alpha} \times \vec{p} + i\vec{\alpha} \times \vec{p} = 0$			
Total Spin	$\begin{split} \hat{S}^2 &= \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2 = \frac{1}{4} \begin{pmatrix} \sigma_x & 0 \\ 0 & \sigma_x \end{pmatrix}^2 + \frac{1}{4} \begin{pmatrix} \sigma_y & 0 \\ 0 & \sigma_y \end{pmatrix}^2 + \frac{1}{4} \begin{pmatrix} \sigma_z & 0 \\ 0 & \sigma_z \end{pmatrix}^2 = \frac{1}{4} \begin{pmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_x^2 \end{pmatrix} + \begin{pmatrix} \sigma_y^2 & 0 \\ 0 & \sigma_y^2 \end{pmatrix} + \begin{pmatrix} \sigma_z^2 & 0 \\ 0 & \sigma_z^2 \end{pmatrix} \end{pmatrix} \\ \hat{S}^2 &= \frac{1}{4} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \frac{3}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ Angular Momentum Algebra: } \hat{S}^2 \Psi = S(S+1)\Psi = \frac{3}{4}\Psi \Longrightarrow S = \frac{1}{2} \end{split}$ Dirac particles have an intrinsic Spin $S = \frac{1}{2}$			

Charge Conjugation

Motivation	The effect of charge conjugation is to replace particles with the corresponding antiparticles and vice versa.
	In classical electro dynamics: $\begin{pmatrix} E \\ -\vec{p} \end{pmatrix}^T \rightarrow \begin{pmatrix} E - q\phi \\ -(\vec{p} - q\vec{A}) \end{pmatrix}^T \iff p_\mu \rightarrow p_\mu - qA_\mu$ (minimal substitution).
	Corresponding quantum substitution: $\begin{pmatrix} \hat{E} \\ -\hat{p} \end{pmatrix}^T = \begin{pmatrix} i\partial_t \\ -(-i\vec{\nabla}) \end{pmatrix}^T \rightarrow \begin{pmatrix} i\partial_t - q\phi \\ -(-i\vec{\nabla} - q\vec{A}) \end{pmatrix}^T \Leftrightarrow i\partial_\mu \rightarrow i\partial_\mu - qA_\mu \dots (8)$
	$(1) \Rightarrow (i\gamma^{\mu}\partial_{\mu} - m)\Psi = \gamma^{\mu}i\partial_{\mu}\Psi - m\Psi = 0 \stackrel{(8)}{\Rightarrow} \gamma^{\mu}(i\partial_{\mu} - qA_{\mu})\Psi - m\Psi = i\gamma^{\mu}\partial_{\mu}\Psi - q\gamma^{\mu}A_{\mu}\Psi - m\Psi = 0 \cdot i$ $-\gamma^{\mu}\partial_{\mu}\Psi - iq\gamma^{\mu}A_{\mu}\Psi - im\Psi = 0 \cdot (-1) \Rightarrow \gamma^{\mu}\partial_{\mu}\Psi + iq\gamma^{\mu}A_{\mu}\Psi + im\Psi = 0 q \stackrel{\text{def}}{=} -e \Rightarrow$
Charge	$\gamma^{\mu}\partial_{\mu}\Psi - ie\gamma^{\mu}A_{\mu}\Psi + im\Psi = 0 \Longrightarrow \boxed{\gamma^{\mu}(\partial_{\mu} - ieA_{\mu})\Psi + im\Psi = 0}^{*} \Longrightarrow (\gamma^{\mu})^{*}(\partial_{\mu} + ieA_{\mu})\Psi^{*} - im\Psi^{*} = 0 (-i\gamma^{2})\cdot$
Conjugation	$-i\gamma^{2}(\gamma^{\mu})^{*}(\partial_{\mu}+ieA_{\mu})\Psi^{*}-\gamma^{2}m\Psi^{*}=0 \Longrightarrow$
Operator C	$-i\gamma^{2}[(\gamma^{3})^{*}(d_{0} + ieA_{0}) + (\gamma^{1})^{*}(d_{1} + ieA_{1}) + (\gamma^{2})^{*}(d_{2} + ieA_{2}) + (\gamma^{3})^{*}(d_{3} + ieA_{3})]\Psi^{*} - \gamma^{2}m\Psi^{*} = 0(9)$
	$ (\gamma^0)^* = \gamma^0, (\gamma^1)^* = \gamma^1, (\gamma^3)^* = \gamma^3, \text{but } (\gamma^2)^* = -\gamma^2 \Rightarrow $ $ -i v^2 [v^0(\partial_1 + i \rho A_1) + v^1(\partial_1 + i \rho A_1) + v^2(\partial_1 + i \rho A_1) + v^3(\partial_1 + i \rho A_1)] \Psi^* = v^2 m \Psi^* = 0 \Rightarrow $
	$-i[\gamma^{2}\gamma^{0}(\partial_{0} + ieA_{0}) + \gamma^{2}\gamma^{1}(\partial_{1} + ieA_{1}) - \gamma^{2}\gamma^{2}(\partial_{2} + ieA_{2}) + \gamma^{2}\gamma^{3}(\partial_{3} + ieA_{3})]\Psi^{*} - \gamma^{2}m\Psi^{*} = 0[\gamma^{2}\gamma^{\mu} = -\gamma^{\mu}\gamma^{2} \Rightarrow$
	$-i[-\gamma^{0}\gamma^{2}(\partial_{0}+ieA_{0})-\gamma^{1}\gamma^{2}(\partial_{1}+ieA_{1})-\gamma^{2}\gamma^{2}(\partial_{2}+ieA_{2})-\gamma^{3}\gamma^{2}(\partial_{3}+ieA_{3})]\Psi^{*}-\gamma^{2}m\Psi^{*}=0 \Longrightarrow$
	$-i[-\gamma^{0}(\partial_{0} + ieA_{0}) - \gamma^{1}(\partial_{1} + ieA_{1}) - \gamma^{2}(\partial_{2} + ieA_{2}) - \gamma^{3}(\partial_{3} + ieA_{3})]\gamma^{2}\Psi^{*} - m\gamma^{2}\Psi^{*} = 0 \Longrightarrow$ $[\gamma^{0}(\partial_{0} + ieA_{0}) + \gamma^{1}(\partial_{1} + ieA_{1}) + \gamma^{2}(\partial_{2} + ieA_{2}) + \gamma^{3}(\partial_{3} + ieA_{3})]\gamma^{2}\Psi^{*} + im i\gamma^{2}\Psi^{*} = 0 \Longrightarrow$
	$\gamma^{\mu}(\partial_{\mu} + ieA_{\mu})i\gamma^{2}\Psi^{*} + imi\gamma^{2}\Psi^{*} = 0 \Longrightarrow \boxed{\gamma^{\mu}(\partial_{\mu} + ieA_{\mu})\Psi' + im\Psi' = 0} \text{ with } \boxed{\Psi' = \hat{C}\Psi = i\gamma^{2}\Psi^{*}}$
Charge Conjugation Operator	$\Psi_{1}=N_{1}U_{1}e^{i(\vec{p}\cdot\vec{x}-Et)} = \sqrt{E+m} \begin{pmatrix} 1\\ 0\\ \frac{p_{z}}{E+m}\\ \frac{p_{z}+ip_{y}}{E+m} \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)}; \Psi_{1}'=\hat{C}\Psi_{1} = i\gamma^{2}\Psi_{1}^{*} = \sqrt{E+m} i \begin{pmatrix} 0 & 0 & 0 & -i\\ 0 & 0 & i & 0\\ 0 & i & 0 & 0\\ -i & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ \frac{p_{z}}{E+m}\\ \frac{p_{x}-ip_{y}}{E+m} \end{pmatrix} e^{-i(\vec{p}\cdot\vec{x}-Et)}$
coverts particle to anti-particle	$\Psi_{1}^{\prime} = \sqrt{E + m} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \frac{p_{z}}{E + m} \\ \frac{p_{x} - ip_{y}}{E + m} \end{pmatrix} e^{-i(\vec{p}\cdot\vec{x} - Et)} = \sqrt{E + m} \begin{pmatrix} \frac{p_{x} - ip_{y}}{E + m} \\ -\frac{p_{z}}{E + m} \\ 0 \\ 1 \end{pmatrix} e^{-i(\vec{p}\cdot\vec{x} - Et)} \Longrightarrow \Psi_{1}^{\prime} = N_{1}V_{1}e^{-i(\vec{p}\cdot\vec{x} - Et)}$
Ant.part. Op.	$\widehat{H}_{D}^{(V)} = -i\frac{\partial}{\partial t}, \hat{p}^{(V)} = +i\vec{\nabla}, \hat{S}^{(V)} = -\hat{S}$

Helicity

	For particles at	rest, spinors $U_1($	$\overline{\left[E,\vec{0}\right]} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ ar	nd $U_2(E,\vec{0}) = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$) are Eigenstates o	$f \hat{S}_z = \frac{1}{2} \begin{pmatrix} \sigma_z & 0 \\ 0 & \sigma_z \end{pmatrix}$	$= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & -1 \end{pmatrix} \Rightarrow$
Particles at Rest	$\hat{S}_z U_1(E,\vec{0}) = \frac{1}{2}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & - \end{pmatrix}$	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} $	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \frac{1}{2}U_1(E,$, 0);		\ ♥ ~	U 1/
	$\hat{S}_z U_2(E,\vec{0}) = \frac{1}{2}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & - \end{pmatrix}$	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = - $	$-\frac{1}{2} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} = -\frac{1}{2}U$	$T_2(E,\vec{0})$			
	In general, spind	ors U_1, U_2, V_1, V_2	of moving part	icles are not Eige	enstates of \hat{S}_z . But the formula \hat{S}_z is the second sec	ney are for parti	cles moving in <u>+</u>	z direction:
	$\hat{S}_z U_1(E,0,0,\pm p$	$d_z) = \frac{1}{2}\sqrt{E+m}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix} $	$ \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \begin{pmatrix} 1\\0\\\pm p_z\\E+m\\0 \end{pmatrix} = $	$\pm \frac{1}{2}\sqrt{E+m} \begin{pmatrix} 1\\ 0\\ \frac{\pm p_z}{E+m} \end{pmatrix}$	$=\frac{1}{2}U_1(E,0,0,\pm)$	(p_z)	
Particles	$\hat{S}_z U_2(E,0,0,\pm p$	$d_z) = \frac{1}{2}\sqrt{E+m}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 0\\0\\0\\-1 \end{pmatrix} \begin{pmatrix} 0\\1\\0\\\frac{\mp p_z}{E+m} \end{pmatrix} =$	$= -\frac{1}{2}\sqrt{E+m} \begin{pmatrix} 0\\1\\0\\\frac{\mp p_z}{E+m} \end{pmatrix}$	$\left(\right) = -\frac{1}{2}U_2(E, 0)$	$(0,0,\pm p_z)$	
moving in	Equivalently for	the anti-particle	es with $\hat{S}_z^{(v)} =$	$-\hat{S}_z$:	<u>\</u> -	/		
z-direction	$\hat{S}_{z}^{(v)}V_{1}(E,0,0,\pm \hat{S}_{z}^{(v)}V_{2}(E,0,0,\pm$	$p_z) = -\hat{S}_z V_1(E,$ $p_z) = -\hat{S}_z V_2(E,$	$0,0,\pm p_z) =$, 0,0, $\pm p_z) = -$	$\frac{\frac{1}{2}V_1(E,0,0,\pm p)}{-\frac{1}{2}V_2(E,0,0,\pm p)}$	(z), (z)			
	Hence, for parti	cles / antiparticle	es with mome	entum $\vec{p} = p\vec{e}_z$,	U_1 and V_1 represent	t spin up, and U	V_2 and V_2 repres	ent spin down
	$\xrightarrow{u_1}$	↓ u ₂	V ₁	V ₂	\downarrow	↓ u ₂	\downarrow V_1	↓ v ₂
			$\longrightarrow Z$				/ -	
77	\hat{S}_z does not pro component of t We define Helic	duce a "good" qu he spin along the ity as normalized	uantum numb e direction of f d component of	per, because it d flight is a "good' of the particles	oes not commute w ' quantum number: spin along its direct	with \hat{H}_D : $[\hat{H}_D, \hat{S}_z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight:) ≠ 0. However	, the
Ŝ ĥ	\hat{S}_z does not pro component of t We define Helic $\hat{h} = \frac{\hat{s}\cdot\hat{p}}{ \vec{p} } = \frac{1}{2}\frac{\hat{\Sigma}\cdot\hat{p}}{ \vec{p} } =$	duce a "good" quice spin along the spin along the ity as normalized $= \frac{1}{2 \vec{p} } \begin{pmatrix} \vec{\sigma} \cdot \vec{p} & \vec{0} \\ \vec{0} & \vec{\sigma} \end{pmatrix}$	uantum numb e direction of f d component \vec{j} \vec{p} Helicity st Left hand Helicity is	per, because it d flight is a "good" of the particles a tates are $+\frac{1}{2}$ ("r ded particles can s not Lorenz-inva	oes not commute w " quantum number: spin along its direct ight handed") and - participate in weal riant, a trafo to a ref	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction evence frame w	≠ 0. However d") (see below)	, the n is possible
Ŝ ħ p	\hat{S}_z does not pro component of t We define Helic $\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\vec{\Sigma} \cdot \hat{p}}{ \vec{p} } =$ We are looking	duce a "good" quice a spin along the spin along the ity as normalized $= \frac{1}{2 \vec{p} } \begin{pmatrix} \vec{\sigma} \cdot \vec{p} & \vec{0} \\ \vec{0} & \vec{\sigma} \end{pmatrix}$ for eigenstates v		ber, because it d flight is a "good" of the particles s tates are $+\frac{1}{2}$ ("r ded particles can not Lorenz-inva	oes not commute w " quantum number: spin along its direct ight handed") and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} :	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed k interaction ference frame w		, the n is possible
Ŝ ĥ	\hat{S}_z does not pro component of t We define Helic $\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{\Sigma} \cdot \hat{p}}{ \vec{p} } =$ We are looking $\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 p }$	duce a "good" quice a spin along the spin along the ity as normalized $= \frac{1}{2 \vec{p} } \begin{pmatrix} \vec{\sigma} \cdot \vec{p} & \vec{0} \\ \vec{0} & \vec{\sigma} \end{pmatrix}$ for eigenstates view $\vec{p} = \begin{pmatrix} \vec{\sigma} \cdot \vec{p} & \vec{0} \\ \vec{0} & \vec{\sigma} \cdot \vec{p} \end{pmatrix}$	$ \begin{array}{c} & \rightarrow & Z \\ \text{uantum numb} \\ \text{e direction of f} \\ \text{d component} \\ \vec{l} $	ber, because it d flight is a "good" of the particles tates are $+\frac{1}{2}$ ("r ded particles can a not Lorenz-inva enstates for both ${}^{A}_{B}$) (8) $\Rightarrow \begin{pmatrix} \vec{\sigma} \\ \vec{\sigma} \end{pmatrix}$	oes not commute w " quantum number: spin along its direct ight handed") and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} : $\cdot \vec{p})U_A = 2p\lambda U_A \dots ($ $\cdot \vec{p})U_B = 2p\lambda U_B \dots ($	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction ference frame w (8a) (8b)	d") (see below)	, the n is possible
ŝ ĥ	$\hat{S}_{z} \text{ does not processed for a component of t}$ $\hat{W} = \text{define Helic}$ $\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{\Sigma} \cdot \hat{p}}{ \vec{p} } =$ We are looking $\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 \mu }$ $(8a) \cdot (\vec{\sigma} \cdot \vec{p}) =$	duce a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & & Z \\ \text{uantum numb} \\ \text{e direction of } \text{i} \\ \text{d component} \\ \vec{j} \\ \cdot \vec{p} \end{array} \right) \begin{array}{l} \text{Helicity si} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \end{pmatrix} = \lambda \begin{pmatrix} U_A \\ U_E \\ U_E \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A 0 \end{array} $	ber, because it d flight is a "good" of the particles : tates are $+\frac{1}{2}$ ("r ded particles can a not Lorenz-inva enstates for both $\binom{a}{b}$ (8) $\Rightarrow (\overrightarrow{\sigma}$ ($\overrightarrow{\sigma} \cdot \overrightarrow{p})^2 = \overrightarrow{p}^2 =$	oes not commute w ' quantum number: spin along its direct ight handed'') and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} : $\cdot \vec{p})U_A = 2p\lambda U_A \dots ($ $\cdot \vec{p})U_B = 2p\lambda U_B \dots ($ $\Rightarrow \vec{p}^2 U_A = 2p\lambda (\vec{\sigma} \cdot \vec{p})$	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction ference frame w (8a) (8b) $\hat{B}(D)_A \stackrel{(8a)}{\Longrightarrow} \vec{p}^2 U_A =$	$ \neq 0$. However d") (see below) ith opposite spi = $2p\lambda 2p\lambda U_A =$, the n is possible $4p^2\lambda^2 U_A \Longrightarrow$
Ŝ ħ ħ	$\hat{S}_{z} \text{ does not pro-component of t} We define Helic\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{\Sigma} \cdot \hat{p}}{ \vec{p} } = We are looking\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 p } \\ (8a) \cdot (\vec{\sigma} \cdot \vec{p}) = \\ 4\lambda^{2} = 1 \Longrightarrow \boxed{\lambda} = $	duce a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & \rightarrow & z \\ \text{uantum numb} \\ \text{e direction of f} \\ \text{d component} \\ \vec{D} \\ \vec{D} \\ \end{array} \right) \begin{array}{l} \text{Helicity si} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \end{pmatrix} = \lambda \begin{pmatrix} U_A \\ U_B \\ U_B \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A (\\ \text{cause the spin} \\ \end{pmatrix} $	ber, because it d flight is a "good" of the particles tates are $+\frac{1}{2}$ ("r ded particles can anot Lorenz-inva mustates for both A_B^A) (8) $\Rightarrow (\vec{\sigma} \cdot \vec{p})^2 = \vec{p}^2 =$ hors correspond	oes not commute w ' quantum number: spin along its direct ight handed'') and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} : $\vec{p})U_A = 2p\lambda U_A($ $\vec{p})U_B = 2p\lambda U_B($ $\Rightarrow \vec{p}^2 U_A = 2p\lambda(\vec{\sigma} \cdot \vec{p})$ ing to the two helici	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction ference frame w (8a) (8b) $\hat{D}U_A \stackrel{(8a)}{\Longrightarrow} \vec{p}^2 U_A =$ ity states are also	$ \neq 0$. However d") (see below) tith opposite spi = $2p\lambda 2p\lambda U_A =$ so eigenstates c	, the n is possible $4p^2\lambda^2 U_A \Rightarrow$ of the Dirac
Ŝ ĥ	$\hat{S}_{z} \text{ does not procomponent of t}$ We define Helic $\hat{h} = \frac{\hat{s}\cdot\hat{p}}{ \vec{p} } = \frac{1}{2}\frac{\hat{\Sigma}\cdot\hat{p}}{ \vec{p} } =$ We are looking $\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 l}$ (8a) $\cdot (\vec{\sigma} \cdot \vec{p}) =$ $4\lambda^{2} = 1 \Longrightarrow \boxed{\lambda} =$ equation, U_{A} and	duce a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & \rightarrow & z \\ \text{uantum numb} \\ \text{e direction of 1} \\ \text{d component} \\ \vec{J} \\ \cdot \vec{p} \end{array} \begin{array}{c} \text{Helicity si} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \end{pmatrix} = \lambda \begin{pmatrix} U_A \\ U_E \\ \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A \\ \text{cause the spin} \\ \text{ly equation (} \end{array} $	per, because it d flight is a "good" of the particles at tates are $+\frac{1}{2}$ ("r ded particles can a not Lorenz-inva enstates for both ${}^{A}_{B}$) (8) \Rightarrow ($\vec{\sigma}$ ($\vec{\sigma} \cdot \vec{p}$) ² = \vec{p}^{2} = more correspond (3) from section	oes not commute w " quantum number: spin along its direct ight handed") and - participate in weak riant, a trafo to a ref \hat{H}_D and \hat{h} : $\vec{p})U_A = 2p\lambda U_A($ $\vec{p})U_B = 2p\lambda U_B($ $\Rightarrow \vec{p}^2 U_A = 2p\lambda (\vec{\sigma} \cdot \vec{p})$ ing to the two helici	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction ference frame w (8a) (8b) $\hat{F}_D U_A \stackrel{(8a)}{\Longrightarrow} \vec{p}^2 U_A =$ ity states are also icle Solution": \hat{V}_A	$ \neq 0$. However d") (see below) with opposite spin $= 2p\lambda 2p\lambda U_A =$ so eigenstates of $U_B = \frac{\vec{\sigma} \cdot \vec{p}}{E+m} U_A =$, the n is possible $4p^2\lambda^2 U_A \Longrightarrow$ of the Dirac \Rightarrow
\vec{s} \vec{p}	$\hat{S}_{z} \text{ does not pro-component of t} We define Helic\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{\Sigma} \cdot \hat{p}}{ \vec{p} } = We are looking\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 _{I}} \\ (8a) \cdot (\vec{\sigma} \cdot \vec{p}) = \\ 4\lambda^{2} = 1 \Longrightarrow \boxed{\lambda} = \\ equation, U_{A} an(\vec{\sigma} \cdot \vec{p})U_{A} = (E$	duce a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & \rightarrow & z \\ \hline \\ \text{uantum numb} \\ \text{e direction of } \\ \text{d component} \\ \vec{J} \\ \vec{D} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \end{pmatrix} = \lambda \begin{pmatrix} U_A \\ U_B \\ U_B \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A \\ \text{cause the spin} \\ \text{ly equation (} \\ \lambda \vec{U}_A = (E + m) \\ \end{pmatrix} $	ber, because it d flight is a "good" of the particles at tates are $+\frac{1}{2}$ ("r ded particles can a not Lorenz-inva enstates for both ${}^{A}_{B}$) (8) $\Rightarrow \begin{pmatrix} \vec{\sigma} \\ \vec{\sigma} \\ (\vec{\sigma} \cdot \vec{p})^2 = \vec{p}^2 =$ nors correspond (3) from section $n \end{pmatrix} \vec{U}_B \Rightarrow \boxed{\vec{U}_B = -}$	oes not commute w ' quantum number: spin along its direct ight handed'') and - participate in weak riant, a trafo to a ref \hat{H}_D and \hat{h} : $\cdot \vec{p})U_A = 2p\lambda U_A($ $\cdot \vec{p})U_B = 2p\lambda U_B($ $\Rightarrow \vec{p}^2 U_A = 2p\lambda (\vec{\sigma} \cdot \vec{p})$ ing to the two helicit α "General Free Part $\frac{2p\lambda}{E+m}\vec{U}_A$ (10)	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction ference frame w (8a) (8b) (b) $U_A \stackrel{(8a)}{\Longrightarrow} \vec{p}^2 U_A =$ ity states are also icle Solution": U_A	$ \neq 0$. However d") (see below) ith opposite spi = $2p\lambda 2p\lambda U_A =$ so eigenstates c $U_B = \frac{\vec{\sigma}\cdot\vec{p}}{E+m}U_A =$, the n is possible $4p^2\lambda^2 U_A \Longrightarrow$ of the Dirac
\vec{s} \vec{p}	$\hat{S}_{z} \text{ does not pro-component of t} We define Helic\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{\Sigma} \cdot \hat{p}}{ \vec{p} } = We are looking\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 p } \\ (8a) \cdot (\vec{\sigma} \cdot \vec{p}) = 4\lambda^{2} = 1 \Longrightarrow \boxed{\lambda} = equation, U_{A} an(\vec{\sigma} \cdot \vec{p})U_{A} = (EAssumption: Pa$	duce a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & \rightarrow & z \\ \hline \\ \text{uantum numb} \\ \text{e direction of } \\ \vec{J} \\ \vec{D} \\ \vec{D} \\ \vec{D} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \\ \end{pmatrix} = \lambda \begin{pmatrix} U_A \\ U_B \\ \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A \\ \text{cause the spin} \\ \text{l by equation (} \\ \lambda \vec{U}_A = (E + m) \\ \text{eneral (} \vartheta, \varphi) \\ \end{pmatrix} $	ber, because it d flight is a "good" of the particles : tates are $+\frac{1}{2}$ ("r ded particles can a not Lorenz-inva unstates for both ${}^{A}_{B}$) (8) $\Rightarrow \begin{pmatrix} \vec{\sigma} \\ \vec{\sigma} \\ (\vec{\sigma} \cdot \vec{p})^{2} = \vec{p}^{2} =$ nors correspond (3) from section $n \end{pmatrix} \vec{U}_{B} \Rightarrow \boxed{\vec{U}_{B}} = -$ direction: $\vec{p} = \begin{pmatrix} n \\ n \end{pmatrix}$	oes not commute w ' quantum number: spin along its direct ight handed'') and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} : $\cdot \vec{p})U_A = 2p\lambda U_A($ $\cdot \vec{p})U_B = 2p\lambda U_B($ $\Rightarrow \vec{p}^2 U_A = 2p\lambda (\vec{\sigma} \cdot \vec{p})$ ing to the two helicit $\frac{2p\lambda}{E+m}\vec{U}_A$ (10) $\binom{p}{p_X} = \begin{pmatrix} p\sin(\vartheta) c \\ p\sin(\vartheta) s \\ p\cos(\vartheta) \end{pmatrix}$	with \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction rerence frame w (8a) (8b) (b) $U_A \stackrel{(8a)}{\Longrightarrow} \vec{p}^2 U_A =$ ity states are also icle Solution": U_A $os(\varphi)$ \mathfrak{g}) (11) \mathfrak{g}	$ \neq 0.$ However d") (see below) ith opposite spi = $2p\lambda 2p\lambda U_A =$ so eigenstates c $U_B = \frac{\sigma \cdot p}{E+m} U_A =$, the n is possible $4p^2\lambda^2 U_A \Longrightarrow$ of the Dirac \Rightarrow
\vec{s} \vec{p}	$\hat{S}_{z} \text{ does not pro-component of t} We define Helic\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{\Sigma} \cdot \hat{p}}{ \vec{p} } = We are looking\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 \vec{p} } = (8a) \cdot (\vec{\sigma} \cdot \vec{p}) = 4\lambda^{2} = 1 \Longrightarrow \lambda = equation, U_{A} and(\vec{\sigma} \cdot \vec{p})U_{A} = (EAssumption: Pa\vec{\sigma} \cdot \vec{p} = \sigma_{x}p_{x} + $	duce a "good" quice a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & Z \\ \text{uantum numb} \\ e \text{ direction of } \\ d \text{ component} \\ \vec{D} \\ \vec{P} \\ \end{array} \\ \begin{array}{c} \text{Helicity si} \\ \text{Left hand} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \\ \end{pmatrix} = \lambda \begin{pmatrix} U_A \\ U_B \\ \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A \\ (\text{cause the spin} \\ \text{I by equation } (\lambda \vec{U}_A = (E + m)) \\ \text{eneral } (\vartheta, \varphi) \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} p_x + \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix} \\ \end{array} $	ber, because it d flight is a "good" of the particles tates are $+\frac{1}{2}$ ("r ded particles can anot Lorenz-inva mustates for both ${}^{A}_{B}$) (8) \Rightarrow ($\vec{\sigma}$ ($\vec{\sigma} \cdot \vec{p}$) ² = \vec{p} ² = hors correspond (3) from section n) $\vec{U}_{B} \Rightarrow [\vec{U}_{B} = -$ direction: $\vec{p} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} p_{y} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} p_{y} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	oes not commute w '' quantum number: spin along its direct ight handed'') and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} : $\vec{p})U_A = 2p\lambda U_A \dots (0)$ $\vec{p}^2 U_A = 2p\lambda (\vec{o} \cdot \vec{p})$ ing to the two helic \vec{r} General Free Part $\frac{2p\lambda}{k} \vec{U}_A$ (10) $\binom{Px}{p_y} = \begin{pmatrix} p \sin(\theta) c \\ p \sin(\theta) s \\ p \cos(\theta) \\ 0 & -1 \end{pmatrix} p_z = \begin{pmatrix} p \\ p_x + \theta \end{pmatrix}$	rith \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction ference frame w (8a) (8b) $\hat{P}(U_A \Longrightarrow \hat{p}^2 U_A = \frac{1}{2}$ ity states are also icle Solution": \hat{U} $\hat{D}(\hat{\varphi})$ $\hat{D}(\hat{\varphi})$ (11) $\hat{\theta})$ (11) $\hat{\theta}$ $\hat{P}_X - ip_Y$	$ \neq 0. \text{ However}$ $d'') (see below)$ $d'') (see$, the n is possible $4p^2 \lambda^2 U_A \Longrightarrow$ of the Dirac
$\vec{s} \neq \vec{p}$	$\begin{split} \hat{S}_z & \text{does not procomponent of t} \\ \hat{W} & \text{define Helic} \\ \hat{h} &= \frac{\hat{s}\cdot\hat{p}}{ \vec{p} } = \frac{1}{2}\frac{\hat{\Sigma}\cdot\hat{p}}{ \vec{p} } = \\ & \text{We are looking} \\ \hat{h}U &= \lambda U \Longrightarrow \frac{1}{2 p } \\ & (8a) \cdot (\vec{\sigma} \cdot \vec{p}) = \\ & 4\lambda^2 = 1 \Longrightarrow \boxed{\lambda} = \\ & \text{equation, } U_A \text{ and} \\ & (\vec{\sigma} \cdot \vec{p})U_A = (E \\ & \text{Assumption: Pa} \\ & \vec{\sigma} \cdot \vec{p} = \sigma_x p_x + \\ & \vec{\sigma} \cdot \vec{p} = \begin{pmatrix} p \text{ sin}(q) \end{pmatrix} \end{split}$	duce a "good" quice a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & z \\ \text{uantum numb} \\ \text{e direction of } \\ \text{d component} \\ \overrightarrow{J} \\ \cdot \overrightarrow{p} \end{array} \begin{array}{c} \text{Helicity si} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \end{pmatrix} = \lambda \begin{pmatrix} U_I \\ U_L \\ U_L \end{pmatrix} \\ 2p\lambda(\overrightarrow{\sigma} \cdot \overrightarrow{p})U_A \\ \text{cause the spin} \\ \text{l by equation (} \\ \lambda \overrightarrow{U}_A = (E + m) \\ \text{eneral } (\vartheta, \varphi) \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} p_x + \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix} \\ \text{in}(\vartheta) \sin(\varphi) \end{array} $	ber, because it d flight is a "good' of the particles : tates are $+\frac{1}{2}$ ("r led particles can a not Lorenz-inva enstates for both ${}^{A}_{B}$) (8) \Rightarrow ($\vec{\sigma}$ ($\vec{\sigma} \cdot \vec{p}$) ² = \vec{p}^{2} = hors correspond (3) from section n) $\vec{U}_{B} \Rightarrow [\vec{U}_{B} = -$ direction: $\vec{p} = \begin{pmatrix} 2 & 0 \\ 0 & -i \\ 0 & p \\ \sin(\vartheta) \cos(\varphi) \end{pmatrix}$	oes not commute w 'quantum number: spin along its direct ight handed'') and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} : $\vec{p})U_A = 2p\lambda U_B \dots$ ($\vec{p})U_B = 2p\lambda U_B \dots$ ($\vec{p})U_B = 2p\lambda (\vec{\sigma} \cdot \vec{p})$ ing to the two helici "General Free Part $\frac{2p\lambda}{b+m}\vec{U}_A$ (10) $\binom{p_X}{p_X} = \begin{pmatrix} p \\ p \\ p \end{pmatrix} (10) \begin{pmatrix} p \sin(\vartheta) c \\ p \\ p \\ p \\ p \end{pmatrix} (10) \begin{pmatrix} p \\ p \end{pmatrix} (10) \begin{pmatrix} p \\ p \\ p \end{pmatrix}$	$ \begin{array}{l} \text{ith } \widehat{H}_{D}: \left[\widehat{H}_{D}, \widehat{S}_{z}\right] \\ \left[\widehat{H}_{D}, \widehat{S} \cdot \widehat{p}\right] = 0 \\ \text{ion of flight:} \\ -\frac{1}{2} \left(\text{`'left handed} \right) \\ \frac{1}{2} \left(\text{`'left handed} \right) \\ \text{interaction} \\ ference frame we construct for the second seco$	$ \neq 0. \text{ However}$ $d'') (see below)$ $\text{with opposite spin}$ $= 2p\lambda 2p\lambda U_A = 0$ $\text{so eigenstates constraints}$ $U_B = \frac{\vec{\sigma} \cdot \vec{p}}{E + m} U_A = 0$ $\left(\bigcup_{k=1}^{\infty} \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \right)$, the n is possible $4p^2\lambda^2 U_A \Longrightarrow$ of the Dirac \Rightarrow
$\vec{s} \neq \vec{p}$	$\begin{split} \hat{S}_z & \text{does not procomponent of t} \\ \hat{W} & \text{define Helic} \\ \hat{h} &= \frac{\hat{s}\cdot\hat{p}}{ \vec{p} } = \frac{1}{2}\frac{\hat{\Sigma}\cdot\hat{p}}{ \vec{p} } = \\ & \text{We are looking} \\ \hat{h}U &= \lambda U \Longrightarrow \frac{1}{2 p } \\ & (8a) \cdot (\vec{\sigma} \cdot \vec{p}) = \\ & 4\lambda^2 = 1 \Longrightarrow \boxed{\lambda} = \\ & \text{equation, } U_A \text{ and} \\ & (\vec{\sigma} \cdot \vec{p})U_A = (E \\ & \text{Assumption: Pa} \\ & \vec{\sigma} \cdot \vec{p} = \sigma_x p_x + \\ & \vec{\sigma} \cdot \vec{p} = \binom{1}{p} \sin(\alpha + \beta + \beta) \\ & \vec{\sigma} \cdot \vec{p} = p\binom{1}{p} \sin(\alpha + \beta) \\ & \vec{\sigma} \cdot \vec{p} = p\binom{1}{p} \sin(\alpha + \beta) \\ & \vec{\sigma} \cdot \vec{p} = p\binom{1}{p} \sin(\alpha + \beta) \\ & \vec{\sigma} \cdot \vec{p} = \binom{1}{p} \sin(\alpha + \beta) \\ & \vec{\sigma} \cdot \vec{p} = \binom{1}{p} \binom{1}{p} \left(\frac{1}{p} + \beta + $	duce a "good" quice a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} \overbrace{\begin{array}{l} \\ \\ \end{array}} \overbrace{\begin{array}{l} \\ \\ \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \\ \\ \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \\ \\ \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} } \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \end{array}} \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \end{array}} \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \\ \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \overbrace{\begin{array}{l} \end{array}} \end{array}} \overbrace{\begin{array}{l} \end{array}} \end{array}$ } } } } }	ber, because it d flight is a "good' of the particles : tates are $+\frac{1}{2}$ ("r led particles can a not Lorenz-inva enstates for both A_{B}^{A}) (8) \Rightarrow ($\vec{\sigma}$ ($\vec{\sigma} \cdot \vec{p}$) ² = \vec{p}^{2} = hors correspond (3) from section n) $\vec{U}_{B} \Rightarrow [\vec{U}_{B} = -$ direction: $\vec{p} = \begin{pmatrix} (0 & -i) \\ -i & 0 \end{pmatrix} p_{y} + ((0 -i) \\ -i & 0) p_{y} + ((0 -i) \\ -i & 0) p_{y}) + ((0 -i) \\ -i & 0) (\cos(\varphi) - i \\ -i & -\cos(\vartheta))$	oes not commute w 'quantum number: spin along its direct ight handed") and - participate in weak riant, a trafo to a ref \hat{H}_D and \hat{h} : $\vec{p})U_A = 2p\lambda U_B \dots$ ($\vec{p})U_B = 2p\lambda U_B \dots$ ($\vec{p})U_B = 2p\lambda U_B \dots$ ($\vec{p})U_B = 2p\lambda (\vec{\sigma} \cdot \vec{p})$ ing to the two helici "General Free Part $\frac{2p\lambda}{p_x} = \begin{pmatrix} p \\ p \\ p \\ -1 \end{pmatrix} p_z = \begin{pmatrix} p \\ p \\ p \\ p \\ p \\ p \\ 0 \end{pmatrix} - ip \sin(\vartheta) \sin(\varphi)$ $p \cos(\vartheta)$ $in(\varphi)$) $= p \begin{pmatrix} \cos(\vartheta) \\ \sin(\varphi) \\ \sin(\varphi) \end{pmatrix}$	rith \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction ference frame w (8a) (8b) $\hat{P}(U_A \Longrightarrow \hat{p}^2 U_A = \frac{1}{2}$ $\hat{P}(U_A \Longrightarrow \hat{p}^2 U_A = \frac{1}{2})$ $\hat{P}(U_A \Longrightarrow \hat{p}^2 U_A = \frac{1}{2})$ \hat	$ \neq 0. \text{ However}$ $ \neq 0. \text{ However}$ $ d'') (see below)$ $ ith opposite spii = 2p\lambda 2p\lambda U_A = so eigenstates of U_B = \frac{\vec{\sigma} \cdot \vec{p}}{E+m} U_A =) (11) e^{i\varphi} \\ (\theta)) (8a)$, the n is possible $4p^2\lambda^2 U_A \Longrightarrow$ of the Dirac \Rightarrow
$\vec{s} \neq \vec{p}$	$\hat{S}_{z} \text{ does not pro-component of tiWe define Helic\hat{h} = \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{z} \cdot \hat{p}}{ \vec{p} } =We are looking\hat{h}U = \lambda U \Longrightarrow \frac{1}{2 \vec{p} }(8a) \cdot (\vec{\sigma} \cdot \vec{p}) =4\lambda^{2} = 1 \Longrightarrow \boxed{\lambda} =equation, U_{A} an(\vec{\sigma} \cdot \vec{p})U_{A} = (EAssumption: Pa\vec{\sigma} \cdot \vec{p} = \sigma_{x}p_{x} +\vec{\sigma} \cdot \vec{p} = \begin{pmatrix} p \sin(\alpha - \beta) \\ p \sin$	duce a "good" quice a "good" quice a "good" quice a "good" quice spin along the	$ \begin{array}{c} & z \\ \hline \\ \text{uantum numb} \\ e \text{ direction of } \\ d \text{ component} \\ \hline \\ \vec{p} \\ \end{array} \right) \begin{array}{l} \text{Helicity si} \\ \text{Left hand} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \\ \end{pmatrix} = \lambda \begin{pmatrix} U_A \\ U_B \\ \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A \\ \text{cause the spin} \\ \text{ly equation (} \\ \lambda \vec{U}_A = (E + m) \\ \text{eneral (} \vartheta, \varphi) \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} p_x + (\\ \text{in(} \vartheta) \sin(\varphi) \\ \sin(\varphi) \\ \sin(\varphi) \\ = 2p\lambda U_A \\ \text{ans} \end{array} \right) $	ber, because it d flight is a "good" of the particles : tates are $+\frac{1}{2}$ ("r ded particles can a not Lorenz-inva instates for both ${}^{A}_{B}$) (8) $\Rightarrow (\vec{\sigma}$ $(\vec{\sigma} \cdot \vec{p})^{2} = \vec{p}^{2} =$ nors correspond (3) from section $n) \vec{U}_{B} \Rightarrow [\vec{U}_{B} = -$ direction: $\vec{p} = ($ $(a - i) p_{y} + (a - i) p_{y} + $	oes not commute w 'quantum number: spin along its direct ight handed'') and - participate in weal riant, a trafo to a ref \hat{H}_D and \hat{h} : $\cdot \vec{p})U_A = 2p\lambda U_A($ $\circ \vec{p})U_B = 2p\lambda U_B($ $\Rightarrow \vec{p}^2 U_A = 2p\lambda (\vec{\sigma} \cdot \vec{p})$ ing to the two helicit ("General Free Part $\frac{2p\lambda}{E+m}\vec{U}_A$ (10) $(P_x)_{p_y} = \begin{pmatrix} p \sin(\vartheta) c \\ p \sin(\vartheta) c \\ p \cos(\vartheta) \\ 0 & -1 \end{pmatrix} p_z = \begin{pmatrix} p \\ p_x + p \end{pmatrix} - ip \sin(\vartheta) \sin(\varphi)$ $p \cos(\vartheta)$ $\sin(\varphi)$) $= p \begin{pmatrix} \cos(\vartheta) \\ \sin(\vartheta) \\ \sin(\varphi) \end{pmatrix}$	$ \begin{array}{l} \text{inth } \widehat{H}_{D}: \left[\widehat{H}_{D}, \widehat{S}_{z}\right] \\ \left[\widehat{H}_{D}, \widehat{S} \cdot \widehat{p}\right] = 0 \\ \text{ion of flight:} \\ -\frac{1}{2} \left(\text{`'left handed} \right) \\ \text{ion of flight:} \\ -\frac{1}{2} \left(\text{`'left handed} \right) \\ \text{interaction ference frame we } \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ \end{array} \\ \begin{array}{l} 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 6a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\ 8b \\ 8b \\ 8b \\ \end{array} \\ \begin{array}{l} 8a \\ 8b \\$	$ \neq 0. \text{ However}$ $d'') (see below)$ ith opposite spi $= 2p\lambda 2p\lambda U_A =$ so eigenstates of $U_B = \frac{\vec{\sigma} \cdot \vec{p}}{E+m} U_A =$ $) \stackrel{(11)}{\Longrightarrow}$ $e^{i\varphi} \stackrel{(8a)}{(\vartheta)} \stackrel{(8a)}{\Longrightarrow}$, the n is possible $4p^2\lambda^2 U_A \Longrightarrow$ of the Dirac \Rightarrow
$\vec{s} \neq \vec{p}$ Helicity	$\begin{split} \hat{S}_z & \text{does not procomponent of t} \\ \hat{S}_z & \text{does not procomponent of t} \\ & \text{We define Helic} \\ \hat{h} &= \frac{\hat{s} \cdot \hat{p}}{ \vec{p} } = \frac{1}{2} \frac{\hat{\Sigma} \cdot \hat{p}}{ \vec{p} } = \\ & \text{We are looking} \\ \hat{h}U &= \lambda U \Longrightarrow \frac{1}{2 \vec{p} } \\ & (\hat{a} \cdot \vec{p}) = \\ & 4\lambda^2 = 1 \Longrightarrow \hat{\lambda} = \\ & (\vec{\sigma} \cdot \vec{p})U_A = (E + A) \\ & (\vec{\sigma} \cdot \vec{p}) = \sigma_x p_x + \\ & \vec{\sigma} \cdot \vec{p} = \sigma_x p_x + \\ & \vec{\sigma} \cdot \vec{p} = \begin{pmatrix} p \sin(i\theta) \\ \sin(\theta) e^{i\phi} \\ (\cos(\theta) \\ \sin(\theta) e^{i\phi} \end{pmatrix} \\ & (\cos(\theta) \\ \sin(\theta) e^{i\phi} \\ & (\cos(\theta) \\ & (\cos(\theta) \\ \sin(\theta) e^{i\phi} \\ & (\cos(\theta) \\$	duce a "good" quice a "good" quice a "good" quice a spin along the spin along th	$ \begin{array}{c} & z \\ \text{uantum numb} \\ e \text{ direction of } \\ d \text{ component} \\ \hline \\ \vec{p} \end{array} \right) \begin{array}{l} \text{Helicity si} \\ \text{Helicity is} \\ \text{Helicity is} \\ \text{which are eige} \\ \begin{pmatrix} U_A \\ U_B \end{pmatrix} = \lambda \begin{pmatrix} U_I \\ U_I \\ \end{pmatrix} \\ 2p\lambda(\vec{\sigma} \cdot \vec{p})U_A \\ \text{cause the spin} \\ \text{l by equation (} \\ \lambda \vec{U}_A = (E + m) \\ \text{eneral } (\vartheta, \varphi) \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} p_x + \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix} p_x + \begin{pmatrix} 0 \\ \sin(\vartheta) \sin(\varphi) \\ \sin(\vartheta) \\ \sin(\vartheta) \\ \sin(\vartheta) \\ = 2p\lambda U_A \\ \text{ans} \\ = 2\lambda \begin{pmatrix} a \\ L \\ L \end{pmatrix} \Rightarrow \end{array} \right) $	ber, because it d flight is a "good" of the particles : tates are $+\frac{1}{2}$ ("r ded particles can a not Lorenz-inva enstates for both ${}^{A}_{B}$) (8) \Rightarrow ($\vec{\sigma}$ ($\vec{\sigma} \cdot \vec{p}$) ² = \vec{p}^{2} = hors correspond (3) from section n) $\vec{U}_{B} \Rightarrow [\vec{U}_{B} = -$ direction: $\vec{p} = \begin{pmatrix} 0 \\ -i \\ 0 \end{pmatrix} p_{y} + \begin{pmatrix} 0 \\ -i \\ 0 \end{pmatrix} p_{y} + \begin{pmatrix} 0 \\ -i \\ 0 \end{pmatrix} (\cos(\varphi) - is - \cos(\vartheta))$ satz: $\vec{U}_{A} = \begin{pmatrix} a \\ b \end{pmatrix}$	oes not commute w 'quantum number: spin along its direct ight handed'') and - participate in weak riant, a trafo to a ref \hat{H}_{D} and \hat{h} : $\vec{p})U_{A} = 2p\lambda U_{A}(c)$ $\vec{p})U_{B} = 2p\lambda U_{B}(c)$ $\vec{p}^{2}U_{A} = 2p\lambda(\vec{\sigma} \cdot \vec{p})$ ing to the two helicit $\vec{r}^{General Free Part}$ $\frac{2p\lambda}{p_{A}} = \begin{pmatrix} p \sin(\theta) c c p \sin(\theta) s c p \cos(\theta) \\ p - 1 p sin(\theta) sin(q) p_{A} = \begin{pmatrix} p p \\ p_{A} + p \end{pmatrix} - ip sin(\theta) sin(q) p_{A} = \begin{pmatrix} p \\ p_{A} + p \end{pmatrix} - ip sin(\theta) sin(q) p_{A} = \begin{pmatrix} p \\ p_{A} + p \end{pmatrix} - ip sin(\theta) sin(q) p_{A} = \begin{pmatrix} p \\ p_{A} + p \end{pmatrix} - ip sin(\theta) sin(q) p_{A} = \begin{pmatrix} p \\ p_{A} + p \end{pmatrix} - ip sin(\theta) sin(q) p_{A} = \begin{pmatrix} content + p \\ content + p \end{pmatrix} = p \begin{pmatrix} content + p \\ sin(\theta) \end{pmatrix} = p \begin{pmatrix} content + p \\ sin(\theta) \end{pmatrix}$	rith \hat{H}_D : $[\hat{H}_D, \hat{S}_Z]$ $[\hat{H}_D, \hat{S} \cdot \hat{p}] = 0$ ion of flight: $-\frac{1}{2}$ ("left handed interaction Ference frame w (8a) (8b) $\hat{P}(U_A \Longrightarrow \hat{p}^2 U_A = \frac{1}{2} \hat{p}^2 U_A = \frac{1}$	$ \neq 0. \text{ However}$ $ \neq 0. \text{ However}$ $d'') (see below)$ ith opposite spin $= 2p\lambda 2p\lambda U_A =$ so eigenstates of $U_B = \frac{\vec{\sigma} \cdot \vec{p}}{E+m} U_A =$ $) \stackrel{(11)}{\Longrightarrow}$ $h e^{i\varphi} \stackrel{(8a)}{(\vartheta)} \stackrel{(8a)}{\Longrightarrow}$, the n is possible $4p^2 \lambda^2 U_A \Longrightarrow$ of the Dirac

right-handed particle helicity spinor	right-handed particle $\Rightarrow \lambda = +\frac{1}{2} \xrightarrow{(13)}{a} \frac{b}{a} = \frac{1-\cos(\vartheta)}{\sin(\vartheta)} e^{i\varphi} \alpha \stackrel{\text{def}}{=} \frac{\vartheta}{2} \Rightarrow \frac{b}{a} = \frac{1-\cos(2\alpha)}{\sin(2\alpha)} e^{i\varphi} \frac{\cos(2\alpha) = 1 - 2\sin^2(\alpha)}{1 - \cos(2\alpha) = 2\sin^2(\alpha)} \Rightarrow$
	$\frac{b}{a} = \frac{2\sin^2(\alpha)}{\sin(2\alpha)}e^{i\varphi} \left \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \Longrightarrow \frac{b}{a} = \frac{2\sin^2(\alpha)}{2\sin(\alpha)\cos(\alpha)}e^{i\varphi} = \frac{\sin(\alpha)e^{i\varphi}}{\cos(\alpha)} \Longrightarrow \frac{b}{a} = \frac{\sin(\frac{\vartheta}{2})e^{i\varphi}}{\cos(\frac{\vartheta}{2})} \text{ for } \lambda = +\frac{1}{2}$
	from ansatz $\vec{U}_A = \begin{pmatrix} a \\ b \end{pmatrix} \Longrightarrow \vec{U}_A = N \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (14a) \lambda = \frac{1}{2} \stackrel{(10)}{\Longrightarrow} \vec{U}_B = \frac{p}{E+m} \vec{U}_A \Big \stackrel{(14a)}{\Longrightarrow} \vec{U}_B = N \begin{pmatrix} \frac{p}{E+m} \cos\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m} e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (14b)$
	$N = \sqrt{E+m} \xrightarrow{(14ab)} U_{\uparrow} = \sqrt{E+m} \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m}\cos\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m}e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (15)$ PH $h_{h=+\frac{1}{2}}$
	left-handed particle $\Rightarrow \lambda = -\frac{1}{2} \stackrel{(13)}{\Longrightarrow} \frac{b}{a} = \frac{-1 - \cos(\vartheta)}{\sin(\vartheta)} e^{i\varphi} \left \begin{array}{c} \alpha \stackrel{\text{def}}{=} \frac{\vartheta}{2} \Rightarrow \frac{b}{a} = \frac{-1 - \cos(2\alpha)}{\sin(2\alpha)} e^{i\varphi} \left \begin{array}{c} \cos(2\alpha) = 1 - 2\sin^2(\alpha) \\ \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \end{array} \right \right $
	$\frac{b}{a} = \frac{-1 - 1 + 2\sin^2(\alpha)}{2\sin(\alpha)\cos(\alpha)}e^{i\varphi} = \frac{-1 - 1 + 2\sin^2(\alpha)}{2\sin(\alpha)\cos(\alpha)}e^{i\varphi} = \frac{-2(1 - \sin^2(\alpha))}{2\sin(\alpha)\cos(\alpha)}e^{i\varphi} = \frac{-\cos^2(\alpha)}{\sin(\alpha)\cos(\alpha)}e^{i\varphi} \Rightarrow \underbrace{\frac{b}{a} = \frac{\cos\left(\frac{\theta}{2}\right)e^{i\varphi}}{-\sin\left(\frac{\theta}{2}\right)}\text{ for } \lambda = -\frac{1}{2}}_{(a)}$
left-handed particle helicity	from ansatz $\vec{U}_A = \begin{pmatrix} a \\ b \end{pmatrix} \implies \vec{U}_A = N \begin{pmatrix} -\sin\left(\frac{v}{2}\right) \\ e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (16a) \lambda = -\frac{1}{2} \stackrel{(10)}{\implies} \vec{U}_B = -\frac{p}{E+m} \vec{U}_A \Big \stackrel{(16a)}{\implies} \vec{U}_B = N \begin{pmatrix} \frac{p}{E+m}\sin\left(\frac{v}{2}\right) \\ -\frac{p}{E+m}e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (16b)$
spinor	$N = \sqrt{E+m} \xrightarrow{(16ab)} U_{\downarrow} = \sqrt{E+m} \begin{pmatrix} -\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m}\sin\left(\frac{\vartheta}{2}\right) \\ -\frac{p}{E+m}e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (17)$
anti-particle helicity spinors	analogous: $V_{1} = \sqrt{E+m} \begin{pmatrix} \frac{p}{E+m} \sin\left(\frac{\vartheta}{2}\right) \\ -\frac{p}{E+m} e^{i\varphi} \cos\left(\frac{\vartheta}{2}\right) \\ -\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (18a) V_{1} = \sqrt{E+m} \begin{pmatrix} \frac{p}{E+m} \cos\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m} e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \\ \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} \dots (18b)$
$E \gg m$	$\frac{p}{E+m} \rightarrow \frac{\sqrt{p^2}}{E} \approx \frac{\sqrt{m^2 + p^2}}{E} = \frac{E}{E} = 1 \implies U_{\uparrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad U_{\downarrow} = \sqrt{E} \begin{pmatrix} -\sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) \\ -e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\uparrow} = \sqrt{E} \begin{pmatrix} \sin\left(\frac{\theta}{2}\right) \\ -e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad V_{\downarrow} = \sqrt{E} \begin{pmatrix} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi$

Intrinsic Parity of Dirac Fermions

Parity Operator	Parity Operator: $x' = -x, y' = -y, z' = -z, t' = t;$ $\Psi' = \hat{P}\Psi;$ $\hat{P}\Psi' = \hat{P}\hat{P}\Psi = \Psi$ Dirac Equation with $\Psi'(1) \Rightarrow (i\gamma^{\mu}\partial_{\mu} - m)\Psi' = 0 \Rightarrow (i\gamma^{0}\partial_{0} + i\gamma^{1}\partial_{1} + i\gamma^{2}\partial_{2} + i\gamma^{3}\partial_{3} - m)\Psi' = 0 (19)$ $(i\gamma^{0}\partial_{0} + i\gamma^{1}\partial_{1} + i\gamma^{2}\partial_{2} + i\gamma^{3}\partial_{3} - m)\hat{P}\Psi = 0 \hat{P} \cdot \Rightarrow \hat{P}[(i\gamma^{0}\partial_{0} - i\gamma^{1}\partial_{1} + i\gamma^{2}\partial_{2} + i\gamma^{3}\partial_{3} - m)\hat{P}\Psi] = 0 \Rightarrow$ $\hat{P}(i\gamma^{0}\partial_{0} - i\gamma^{0}\gamma^{1}\partial_{1} + i\gamma^{2}\partial_{2} + i\gamma^{3}\partial_{3} - m)\hat{P}\Psi = 0 \Rightarrow (i\gamma^{0}\partial_{0} - i\gamma^{1}\partial_{1} - i\gamma^{2}\partial_{2} - i\gamma^{3}\partial_{3} - m)\hat{P}\Psi' = 0 \gamma^{0} \cdot \Rightarrow$ $(i\gamma^{0}\gamma^{0}\partial_{0} - i\gamma^{0}\gamma^{1}\partial_{1} - i\gamma^{0}\gamma^{2}\partial_{2} - i\gamma^{0}\gamma^{3}\partial_{3} - \gamma^{0}m)\hat{P}\Psi' = 0 \gamma^{0}\gamma^{0} = 1, \gamma^{0}\gamma^{1} = -\gamma^{1}\gamma^{0}, \gamma^{0}\gamma^{2} = -\gamma^{2}\gamma^{0}, \gamma^{0}\gamma^{3} = -\gamma^{3}\gamma^{0} \Rightarrow$ $(i\gamma^{0}\gamma^{0}\hat{P}\partial_{0} + i\gamma^{1}\gamma^{0}\hat{P}\partial_{1} + i\gamma^{2}\gamma^{0}\hat{P}\partial_{2} + i\gamma^{3}\gamma^{0}\hat{P}\partial_{3} - \gamma^{0}\hat{P}m)\hat{\Psi}' = 0 (20) \Rightarrow$
Intrinsic parity	The intrinsic parity of a fundamental particle is defined by the action of the parity operator \hat{P} on a spinor for a particle at rest. $\hat{P}U_1 = \gamma^0 U_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \sqrt{2m} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \sqrt{2m} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = U_1$; analogous: $\hat{P}U_2 = U_2$; $\hat{P}V_1 = -V_1$; $\hat{P}V_2 = -V_2$ Intrinsic parity of particles is positive; intrinsic parity of antiparticle is negative.

Perturbation Theory

QED

charged particle in EM-field	Charged particle moving in EM field: Minimal coupling to potential. Classical minimal substitution: $\vec{p} \to \vec{p} - q\vec{A}$, $E \to E - q\phi$ QM: $[i\partial_{\mu} \to i\partial_{\mu} - qA_{\mu}]$ (1) with $A_{\mu} = (\phi, -\vec{A})$ Dirac equation: $(i\gamma^{\mu}\partial_{\mu} - m)\Psi = 0 \stackrel{(1)}{\Rightarrow} (\gamma^{\mu}(i\partial_{\mu} - qA_{\mu}) - m)\Psi = 0 \Rightarrow i\gamma^{\mu}\partial_{\mu}\Psi - q\gamma^{\mu}A_{\mu}\Psi - m\Psi = 0 \Rightarrow$ $i\gamma^{0}\partial_{0}\Psi + i\gamma^{1}\partial_{1}\Psi + i\gamma^{2}\partial_{2}\Psi + i\gamma^{3}\partial_{3}\Psi - q\gamma^{\mu}A_{\mu}\Psi - m\Psi = i\gamma^{0}\partial_{t}\Psi + i\vec{\gamma}\vec{\nabla}\Psi - q\gamma^{\mu}A_{\mu}\Psi - m\Psi = 0 i\partial_{t} = \hat{H} \Rightarrow$ $\gamma^{0}\hat{H}\Psi + i\vec{\gamma}\vec{\nabla}\Psi - q\gamma^{\mu}A_{\mu}\Psi - m\Psi = 0 \Rightarrow \gamma^{0}\hat{H}\Psi = m\Psi - i\vec{\gamma}\vec{\nabla}\Psi + q\gamma^{\mu}A_{\mu}\Psi \gamma^{0} \cdot \Rightarrow$ $\gamma^{0}\gamma^{0}\hat{H}\Psi = \gamma^{0}m\Psi - i\gamma^{0}\vec{\gamma}\vec{\nabla}\Psi + q\gamma^{0}\gamma^{\mu}A_{\mu}\Psi \gamma^{0}\gamma^{0} = 1 \Rightarrow \hat{H}\Psi = (\gamma^{0}m - i\gamma^{0}\vec{\gamma}\vec{\nabla})\Psi + q\gamma^{0}\gamma^{\mu}A_{\mu}\Psi \gamma^{0} = \underline{\beta}, \vec{\gamma} = \underline{\beta}\vec{\alpha} \Rightarrow$ $\hat{H}\Psi = (\underline{\beta}m - i\underline{\beta}\underline{\beta}\vec{\alpha}\vec{\nabla})\Psi + q\gamma^{0}\gamma^{\mu}A_{\mu}\Psi \underline{\beta}\underline{\beta} = 1, \hat{p} = -i\vec{\nabla} \Rightarrow \hat{H}\Psi = (\underline{\beta}m + \hat{a}\hat{p})\Psi + q\gamma^{0}\gamma^{\mu}A_{\mu}\Psi$
	Potential energy of a spin ½ particle in an EM field $V_D = q\gamma^0 \gamma^\mu A_\mu$ (10)
Polarization of photon in $e^{-}\tau^{-}$ scattering	$\sum_{r=1}^{p_{1}} \sum_{r=1}^{p_{2}} \sum_{r=1}^{p_{1}} \sum_{r=1}^{p_{2}} \sum_{r=1}^{p_{1}} \sum_{r=1}^{p_{$
	$\mathcal{M} = \left\langle \Psi_3 \middle \hat{V}_D \middle \Psi_1 \right\rangle \sum_{\lambda} \frac{\varepsilon_{\mu}^{(\lambda)} \varepsilon_{\mu}^{(\lambda)}}{q^a q_a - m_Y^2} \left\langle \Psi_4 \middle \hat{V}_D \middle \Psi_2 \right\rangle \stackrel{(11abc)}{=} \left[U_e^{\dagger}(p_3^{\sigma}) q_e \gamma^0 \gamma^{\mu} U_e(p_1^{\sigma}) \right] \frac{-g_{\mu\nu}}{q^a q_a} \left[U_{\tau}^{\dagger}(p_4^{\sigma}) q_{\tau} \gamma^0 \gamma^{\nu} U_{\tau}(p_2^{\sigma}) \right] \Longrightarrow$
	$\mathcal{M} = -\left[q_e U_e^{\dagger}(p_3^{\sigma}) \gamma^0 \gamma^{\mu} U_e(p_1^{\sigma})\right] \frac{g_{\mu\nu}}{q^a q_a} \left[q_\tau U_\tau^{\dagger}(p_4^{\sigma}) \gamma^0 \gamma^{\nu} U_\tau(p_2^{\sigma})\right] \left \overline{U} \stackrel{\text{\tiny def}}{=} U^{\dagger} \gamma^0 \Rightarrow$
	$\mathcal{M} = -[q_e \overline{U}_e(p_3^\sigma) \gamma^\mu U_e(p_1^\sigma)] \frac{g_{\mu\nu}}{q^a q_\alpha} [q_\tau \overline{U}_\tau(p_4^\sigma) \gamma^\nu U_\tau(p_2^\sigma)] \text{ with 4-vector currents: } \begin{cases} j_e^\mu = U_e(p_3^\sigma) \gamma^\mu U_e(p_1^\sigma) \\ j_\tau^\mu = \overline{U}_\tau(p_4^\sigma) \gamma^\mu U_\tau(p_2^\sigma) \end{cases} \end{cases} \Longrightarrow$
	$\mathcal{M} = -q_e q_\tau \frac{j_e^{\mu} j_\tau^{\nu} g_{\mu\nu}}{q^{\alpha} q_{\alpha}} \Longrightarrow \mathcal{M} = -q_e q_\tau \frac{j_e^{\mu} j_\tau^{\mu}}{q^{\alpha} q_{\alpha}} \dots (12)$

Feynman Rules for QED

Spin and Cross Section in e $e^+ \to \mu^+ \, \mu^-$ Annihilation

	Four possible helicity configurations in the initial state $_{\rm e^-}$ - (fat arrow: spin, thin arrow: direction of motion)	\rightarrow \rightarrow e^+ RL	$e^- \xrightarrow{\bullet} \xleftarrow{\bullet} e^+$ RR	$e^- \xrightarrow{\longleftarrow} e^+ e^+$	e^{-} \leftarrow e^{+} LR e^{+}
Spin Sums	$\langle \left \mathcal{M}_{fi} \right ^2 \rangle = \frac{1}{4} \left(\mathcal{M}_{RR} ^2 + \mathcal{M}_{RL} ^2 + \mathcal{M}_{LR} ^2 + \mathcal{M}_{LL} ^2 \right) \Longrightarrow$				
	$\langle \left \mathcal{M}_{fi} \right ^2 \rangle = \frac{1}{4} \left(\left \mathcal{M}_{RR \to RR} \right ^2 + \left \mathcal{M}_{RR \to RL} \right ^2 + \left \mathcal{M}_{RR \to LR} \right ^2 + \left \mathcal{M}_{RR \to LR} \right ^2 + \left \mathcal{M}_{RR \to RR} \right ^2 + \left \mathcal{M}_{$	$ \mathcal{L}_{RR \to LL} ^2 + \mathcal{N} ^2$	$\mathcal{I}_{RL\to RR} ^2 + \mathcal{M}_{RL\to R} ^2$	$ \mathcal{M}_{RL} ^2 + \mathcal{M}_{RL \to LR} $	$ \mathcal{M}_{RL \to LL} ^2 + \mathcal{M}_{RL \to LL} ^2$
	$ \mathcal{M}_{LR \to RR} ^2 + \mathcal{M}_{LR \to RL} ^2 + \mathcal{M}_{LR \to LR} ^2 + \mathcal{M}_{RL} ^2$	$ L_{R \to LL} ^2 + N$	$m_{LL \to RR} ^{-} + \mathcal{M}_{LL \to RR} ^{-}$	$ \mathcal{R}_{LL} ^{-} + \mathcal{M}_{LL \to LR} ^{-}$	$= + \mathcal{M}_{LL \to LL} ^2$

Ultra- Relativistic	$ \begin{array}{c} \mathbf{x} \\ \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{array} \overset{\mu^{-}}{\longrightarrow} \end{array} \left p_{1}^{\mu} \overset{c=1}{=} \begin{pmatrix} m_{e} + E_{kin} \\ 0 \\ 0 \\ \mathbf{p}_{1} \end{pmatrix} \right \sqrt{s} = E_{kin} \gg m_{e} \Rightarrow p_{1}^{\mu} \overset{c=1}{=} \begin{pmatrix} E \\ 0 \\ 0 \\ \mathbf{p}_{1} \end{pmatrix} \right E \overset{c=1}{=} \sqrt{m^{2} + \vec{p}^{2}} \overset{\vec{p}^{2} \gg m}{\approx} p \Rightarrow $
Limit $E \gg \sqrt{s}$	$e^{- \underbrace{p_{1}}_{\mu^{+}} \underbrace{p_{4}}_{\mu^{+}} e^{+}} p_{1}^{\mu} \stackrel{c=1}{$
Initial state spinors $E \gg \sqrt{s}$	$E \gg m_e \Longrightarrow U_{\uparrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\theta}{2}\right) \\ \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\theta}{2}\right) \end{pmatrix}, U_{\downarrow} = \sqrt{E} \begin{pmatrix} -\sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) \\ -e^{i\varphi}\cos\left(\frac{\theta}{2}\right) \end{pmatrix}, V_{\uparrow} = \sqrt{E} \begin{pmatrix} \sin\left(\frac{\theta}{2}\right) \\ -e^{i\varphi}\cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\theta}{2}\right) \end{pmatrix}, V_{\downarrow} = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\theta}{2}\right) \end{pmatrix}$
	$ \begin{array}{c} \vartheta_1 = 0\\ \varphi_1 \stackrel{!}{=} 0 \end{array} \right\} \Longrightarrow U_{\uparrow}(p_1) = \sqrt{E} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, U_{\downarrow}(p_1) = \sqrt{E} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \qquad $
Final state	$ \begin{cases} \vartheta_{3} = \vartheta \\ \varphi_{3} = \vartheta \\ \vdots \\ \varphi_{3} = 0 \end{cases} \Rightarrow U_{1}(p_{3}) = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ \sin\left(\frac{\vartheta}{2}\right) \\ \cos\left(\frac{\vartheta}{2}\right) \\ \sin\left(\frac{\vartheta}{2}\right) \end{pmatrix}, U_{1}(p_{3}) = \sqrt{E} \begin{pmatrix} -\sin\left(\frac{\vartheta}{2}\right) \\ \cos\left(\frac{\vartheta}{2}\right) \\ \sin\left(\frac{\vartheta}{2}\right) \\ -\cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} $
$E \gg \sqrt{s}$	$ \begin{array}{c} \vartheta_4 = \pi - \vartheta \\ \varphi_4 \stackrel{!}{=} \pi \end{array} \} \Rightarrow V_1(p_4) = \sqrt{E} \begin{pmatrix} \sin\left(\frac{\pi - \vartheta}{2}\right) \\ \cos\left(\frac{\pi - \vartheta}{2}\right) \\ -\sin\left(\frac{\pi - \vartheta}{2}\right) \\ -\cos\left(\frac{\pi - \vartheta}{2}\right) \end{pmatrix} = \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ \sin\left(\frac{\vartheta}{2}\right) \\ -\cos\left(\frac{\vartheta}{2}\right) \\ -\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix}, V_1(p_4) = \sqrt{E} \begin{pmatrix} \cos\left(\frac{\pi - \vartheta}{2}\right) \\ -\sin\left(\frac{\pi - \vartheta}{2}\right) \\ \cos\left(\frac{\pi - \vartheta}{2}\right) \\ -\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} = \begin{pmatrix} \sin\left(\frac{\vartheta}{2}\right) \\ -\cos\left(\frac{\vartheta}{2}\right) \\ \sin\left(\frac{\vartheta}{2}\right) \\ -\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} $
Muon and Electron 4-Currents	$j^{\mu} = \overline{\Psi}\gamma^{\mu}\phi = \Psi^{\dagger}\gamma^{0}\gamma^{\mu}\phi = \begin{pmatrix} \Psi_{1}^{*}\phi_{1} + \Psi_{2}^{*}\phi_{2} + \Psi_{3}^{*}\phi_{3} + \Psi_{4}^{*}\phi_{4} \\ \Psi_{1}^{*}\phi_{4} + \Psi_{2}^{*}\phi_{3} + \Psi_{3}^{*}\phi_{2} + \Psi_{4}^{*}\phi_{1} \\ -i(\Psi_{1}^{*}\phi_{4} - \Psi_{2}^{*}\phi_{3} + \Psi_{3}^{*}\phi_{2} - \Psi_{4}^{*}\phi_{1}) \\ \Psi_{1}^{*}\phi_{3} - \Psi_{2}^{*}\phi_{4} + \Psi_{3}^{*}\phi_{1} - \Psi_{4}^{*}\phi_{2} \end{pmatrix} \qquad $
helicity combinations for e^+e^- ini- tial state:	$ \begin{split} & j_{e,RL}^{\mu} = \bar{\mathbf{v}}_{1}(p_{2}^{\alpha}) \gamma^{\mu} \mathbf{u}_{1}(p_{1}^{\alpha}) = 2E(0, -1, -i, 0)^{T} \\ & j_{e,RR}^{\mu} = \bar{\mathbf{v}}_{1}(p_{2}^{\alpha}) \gamma^{\mu} \mathbf{u}_{1}(p_{1}^{\alpha}) = (0, 0, 0, 0)^{T} \\ & j_{e,LR}^{\mu} = \bar{\mathbf{v}}_{1}(p_{2}^{\alpha}) \gamma^{\mu} \mathbf{u}_{1}(p_{1}^{\alpha}) = (0, 0, 0, 0)^{T} \\ & j_{e,LR}^{\mu} = \bar{\mathbf{v}}_{1}(p_{2}^{\alpha}) \gamma^{\mu} \mathbf{u}_{1}(p_{1}^{\alpha}) = 2E(0, -1, i, 0)^{T} \end{split} \qquad $
$\frac{d\sigma}{d\Omega^*}$ ultra-	For each helicity combination: $\mathcal{M} = -\frac{e^2}{q^a q_a} j_e^\nu j_\nu^\mu = -\frac{e^2}{s} j_e^\nu j_\nu^{\mu u} = -\frac{e^2}{4E^2} j_e^\nu j_\nu^{\mu u}$, and for $E \gg m$: RR's, LL's are irrelevant \Longrightarrow $\mathcal{M}_{RL \to RL} = -\frac{e^2}{4E^2} j_{eRL}^\nu j_\nu^{\mu uRL} = -\frac{e^2}{4E^2} 2E2E \begin{pmatrix} 0\\ -1\\ -i\\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0\\ +\cos(\vartheta)\\ -i\\ -\sin(\vartheta) \end{pmatrix} = -e^2(-\cos(\vartheta) - 1) = e^2(\cos(\vartheta) + 1)$ $\mathcal{M}_{LR \to LR} = -\frac{e^2}{4E^2} j_{eLR}^\nu j_\nu^{\mu uLR} = -\frac{e^2}{4E^2} 2E2E \begin{pmatrix} 0\\ -1\\ -i\\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0\\ +\cos(\vartheta)\\ +i\\ -\sin(\vartheta) \end{pmatrix} = -e^2(-\cos(\vartheta) - 1) = e^2(\cos(\vartheta) + 1)$
relativistic differential cross section $e^+e^- \rightarrow \mu^+\mu^-$ annihilation	$\mathcal{M}_{RL \to LR} = -\frac{e^2}{4E^2} j_{eRL}^{\nu} j_{\nu}^{muLR} = -\frac{e^2}{4E^2} 2E2E \begin{pmatrix} 0 \\ -1 \\ -i \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ +\cos(\vartheta) \\ +i \\ -\sin(\vartheta) \end{pmatrix} = -e^2(-\cos(\vartheta) + 1) = e^2(\cos(\vartheta) - 1)$ $\mathcal{M}_{LR \to RL} = -\frac{e^2}{4E^2} j_{\nu}^{\nu} j_{\nu}^{muRL} = -\frac{e^2}{4E^2} 2E2E \begin{pmatrix} 0 \\ -1 \\ i \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ +\cos(\vartheta) \\ -i \\ -i \\ -\sin(\vartheta) \end{pmatrix} = -e^2(-\cos(\vartheta) + 1) = e^2(\cos(\vartheta) - 1)$
	$\langle \mathcal{M}_{fi} ^2 \rangle = \frac{1}{4} (\mathcal{M}_{RL \to RL} ^2 + \mathcal{M}_{LR \to LR} ^2 + \mathcal{M}_{RL \to LR} ^2 + \mathcal{M}_{LR \to RR} ^2) = \frac{1}{4} (2e^4(\cos(\vartheta) + 1)^2 + 2e^4(\cos(\vartheta) - 1)^2)$
	$ \left\ \frac{d\sigma}{d\Omega^*} = \frac{1}{64\pi^2 s} \frac{p_f^*}{p_i^*} \mathcal{M}_{fi} ^2 \right\ p_f^* = p_f^* \overset{E \gg m}{\approx} E \Longrightarrow \frac{d\sigma}{d\Omega^*} = \frac{1}{64\pi^2 s} \frac{p_f^*}{p_i^*} \mathcal{M}_{fi} ^2 \Longrightarrow \frac{d\sigma}{d\Omega^*} = \frac{e^4}{64\pi^2 s} (1 + \cos^2(\vartheta)) = \frac{\alpha^2}{4s} (1 + \cos^2(\vartheta)) $
Total $e^+e^- \rightarrow \mu^+\mu^-$ cross-section	$\sigma = \int \frac{d\sigma}{d\Omega^*} d\Omega^* = \frac{\alpha^2}{4s} 2\pi \int_0^{\pi} (1 + \cos^2(\vartheta)) \sin(\vartheta) d\vartheta = \frac{4\pi\alpha^2}{3s} \left \begin{array}{c} \text{Mandelstam} \\ \text{variables:} \end{array} \right _{s=2p_1^{\mu} p_{\mu}^2; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu}^3; \ u = -2p_1^{\mu} p_{\mu}^4; \ t = -2p_1^{\mu} p_{\mu$
Lorentz-in- variant form	$p_{1}^{\mu}p_{\mu}^{2} \stackrel{(1)}{=} 2E^{2}, p_{1}^{\mu}p_{\mu}^{3} \stackrel{(1)}{=} 2E^{2}(1-\cos(\vartheta)), p_{1}^{\mu}p_{\mu}^{4} \stackrel{(1)}{=} 2E^{2}(1+\cos(\vartheta)) \Longrightarrow \left\langle \left \mathcal{M}_{fi} \right ^{2} \right\rangle = 2e^{4} \frac{\left(p_{1}^{\mu}p_{\mu}^{3}\right)^{2} + \left(p_{1}^{\mu}p_{\mu}^{4}\right)^{2}}{\left(p_{1}^{\mu}p_{\mu}^{2}\right)^{2}} = 2e^{4} \frac{t^{2}+u^{2}}{s^{2}}$

Chirality

	The eigenstates of the γ^5 matrix are defined as left- and right-handed <i>chiral</i> states (denoted subscript R and L). In general, the solutions to the Dirac equation which are also eigenstates of γ^5 are identical to the massless helicity eigenstates
Chiral States	$U_{R} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} U_{L} = \sqrt{E} + m \begin{pmatrix} -\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \\ \sin\left(\frac{\vartheta}{2}\right) \\ -e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{R} = \sqrt{E} + m \begin{pmatrix} \sin\left(\frac{\vartheta}{2}\right) \\ -e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} V_{L} = \sqrt{E} + m \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi}\sin\left$
	Any Dirac spinor can be decomposed into left- and right-handed chiral components: $\Psi = \Psi_R + \Psi_L = \hat{P}_R \Psi + \hat{P}_L \Psi$
Chiral Projection Operators	$\hat{P}_{R} = \frac{1}{2}(\mathbb{1} + \gamma^{5}) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \hat{P}_{L} = \frac{1}{2}(\mathbb{1} - \gamma^{5}) = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{P}_{R}U_{R} = U_{R}, \hat{P}_{R}U_{L} = 0 \\ \hat{P}_{R}V_{R} = 0, \hat{P}_{R}V_{L} = V_{L} \\ \hat{P}_{L}U_{L} = U_{L}, \hat{P}_{L}U_{R} = 0 \\ \hat{P}_{L}V_{L} = 0, \hat{P}_{L}V_{R} = V_{R} \end{pmatrix}$
	$U_{\uparrow} = \hat{P}_R U_{\uparrow} + \hat{P}_L U_{\uparrow} = \frac{1}{2} (\mathbb{1} + \gamma^5) U_{\uparrow} + \frac{1}{2} (\mathbb{1} - \gamma^5) U_{\uparrow} \Longrightarrow$
Helicity spinor U_{\uparrow} expressed in chiral components U_R and U_L	$U_{\uparrow} = \frac{1}{2} (\mathbb{1} + \gamma^5) \sqrt{E + m} \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m} \cos\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m} e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} + \frac{1}{2} (\mathbb{1} - \gamma^5) \sqrt{E + m} \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m} \cos\left(\frac{\vartheta}{2}\right) \\ \frac{p}{E+m} e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} \Longrightarrow$
	$U_{\uparrow} = \frac{1}{2} \left(1 + \frac{p}{E+m} \right) \sqrt{E+m} \begin{pmatrix} \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \\ \cos\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \sin\left(\frac{\vartheta}{2}\right) \end{pmatrix} + \frac{1}{2} \left(1 - \frac{p}{E+m} \right) \sqrt{E+m} \begin{pmatrix} -\sin\left(\frac{\vartheta}{2}\right) \\ e^{i\varphi} \cos\left(\frac{\vartheta}{2}\right) \\ \sin\left(\frac{\vartheta}{2}\right) \\ -e^{i\varphi} \cos\left(\frac{\vartheta}{2}\right) \end{pmatrix} \Longrightarrow$
	$U_{\uparrow} = \frac{1}{2} \left(1 + \frac{p}{E+m} \right) U_R + \frac{1}{2} \left(1 - \frac{p}{E+m} \right) U_L$

Electron-Proton Scattering, General

General:	The nature of $e^-p \rightarrow e^-p$ scattering depends on the wavelength of the virtual photon in comparison with the proton radius.				
$\lambda \gg r_p$ (very low energy):	e	Process can be described as elastic scattering of the electron in the static potential of a point-like proton.	$\lambda \sim r_p$ (higher energies):	e	Cross section calculation needs to account for the extended charge
$\lambda < r_p$ (high energy):	c	The elastic scattering cross section becomes small. The dominant process is inelastic scattering. Virtual photon interacts with constituent quark. Proton breaks up.	$\lambda \ll r_p$ (very high energies):	6	The wavelength of the virtual photon is sufficiently short to resolve the proton's internal structure. The proton appears to be a sea of strongly interacting quarks and gluons.

Rutherford and Mott Scattering

General	$e^{-\frac{p_1}{p_1}} \bigoplus_{p}^{p_3} \bigoplus_{p}^{q^{-1}} \bigoplus_{p}^{p_4} \bigoplus_{p}^{q^{-1}} \sum_{p}^{p_4} \bigoplus_{p}^{q^{-1}} \sum_{p}^{q^{-1}} \sum_{p}^{q^{-$
Electron	$U_{\uparrow} = N_e \begin{pmatrix} \cos(\vartheta/2) \\ e^{i\varphi}\sin(\vartheta/2) \\ \kappa\cos(\vartheta/2) \\ \kappa e^{i\varphi}\sin(\vartheta/2) \end{pmatrix}, U_{\downarrow} = N_2 \begin{pmatrix} -\sin(\vartheta/2) \\ e^{i\varphi}\cos(\vartheta/2) \\ \kappa\sin(\vartheta/2) \\ -\kappa e^{i\varphi}\cos(\vartheta/2) \end{pmatrix} \text{ with } \begin{array}{l} N_e = \sqrt{E+m} \\ \kappa = \frac{p}{E+m_e} = \frac{\beta_e \gamma_e}{\gamma_e + 1} \\ e^{i\varphi} r \cos(\vartheta - \alpha) \\ \kappa = \frac{p}{2} \\ \kappa = \frac{1}{2} \\$
spinors	$U_{\uparrow}(p_{1}^{\alpha}) = N_{e} \begin{pmatrix} 1\\0\\\kappa\\0 \end{pmatrix}, U_{\downarrow}(p_{1}^{\alpha}) = N_{e} \begin{pmatrix} 0\\1\\0\\-\kappa \end{pmatrix} \text{ and } U_{\uparrow}(p_{3}^{\alpha}) = N_{e} \begin{pmatrix} \cos(\vartheta/2)\\\sin(\vartheta/2)\\\kappa\cos(\vartheta/2)\\\sin(\upsilon) \end{pmatrix}, U_{\downarrow}(p_{3}^{\alpha}) = N_{e} \begin{pmatrix} -\sin(\vartheta/2)\\\cos(\vartheta/2)\\\kappa\sin(\vartheta/2)\\-\kappa\cos(\vartheta/2) \end{pmatrix}$
Electron currents	$\begin{aligned} j_{e\uparrow\uparrow}^{\mu} &= \overline{U}_{\uparrow}(p_{3}^{\alpha}) \gamma^{\mu} U_{\uparrow}(p_{1}^{\alpha}) = (E+m_{e}) \left((\kappa^{2}+1) \cos\left(\frac{\vartheta}{2}\right), 2\kappa \sin\left(\frac{\vartheta}{2}\right), +2i\kappa \sin\left(\frac{\vartheta}{2}\right), 2\kappa \cos\left(\frac{\vartheta}{2}\right) \right)^{T} \\ j_{e\downarrow\downarrow}^{\mu} &= \overline{U}_{\downarrow}(p_{3}^{\alpha}) \gamma^{\mu} U_{\downarrow}(p_{1}^{\alpha}) = (E+m_{e}) \left((\kappa^{2}+1) \cos\left(\frac{\vartheta}{2}\right), 2\kappa \sin\left(\frac{\vartheta}{2}\right), -2i\kappa \sin\left(\frac{\vartheta}{2}\right), 2\kappa \cos\left(\frac{\vartheta}{2}\right) \right)^{T} \\ j_{e\downarrow\uparrow}^{\mu} &= \overline{U}_{\uparrow}(p_{3}^{\alpha}) \gamma^{\mu} U_{\downarrow}(p_{1}^{\alpha}) = (E+m_{e}) \left((1-\kappa^{2}) \sin\left(\frac{\vartheta}{2}\right), 0, 0, 0 \right)^{T} \\ j_{e\uparrow\downarrow}^{\mu} &= \overline{U}_{\downarrow}(p_{3}^{\alpha}) \gamma^{\mu} U_{\uparrow}(p_{1}^{\alpha}) = (E+m_{e}) \left((\kappa^{2}-1) \sin\left(\frac{\vartheta}{2}\right), 0, 0, 0 \right)^{T} \end{aligned}$
Proton Spinors	The velocity of the recoiling proton is small ($\beta_p \ll 1$), the lower 2 components become 0, since $\kappa \ll 1$. Taking $\varphi_p = \pi$, we get: $U_{\uparrow}(p_2^{\alpha}) = \sqrt{2m_p} \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, U_{\downarrow}(p_2^{\alpha}) = \sqrt{2m_p} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$ and $U_{\uparrow}(p_4^{\alpha}) = \sqrt{2m_p} \begin{pmatrix} \cos(\eta/2)\\-\sin(\eta/2)\\0\\0 \end{pmatrix}, U_{\downarrow}(p_4^{\alpha}) = \sqrt{2m_p} \begin{pmatrix} -\sin(\eta/2)\\-\cos(\eta/2)\\0\\0 \end{pmatrix}$
P. currents	$j_{p\uparrow\uparrow}^{\mu} = -j_{p\downarrow\downarrow}^{\mu} = 2m_p \left(\cos\left(\frac{\eta}{2}\right), 0, 0, 0\right)^T$ and $j_{p\uparrow\downarrow}^{\mu} = -j_{p\downarrow\uparrow}^{\mu} = -2m_p \left(\sin\left(\frac{\eta}{2}\right), 0, 0, 0\right)^T$
Matrix element	$\begin{split} \mathcal{M}_{fi} &= \frac{e^2}{q^a q_\alpha} j_e^\mu j_\mu^p \Longrightarrow \langle \mathcal{M}_{fi}^2 \rangle = \frac{1}{4} \sum \left \mathcal{M}_{fi}^2 \right \Longrightarrow \\ \langle \mathcal{M}_{fi}^2 \rangle &= \frac{1}{4} \frac{e^4}{(q^a q_\alpha)^2} 4m_p^2 (E + m_e)^2 \left(\cos^2 \left(\frac{\eta}{2} \right) + \sin^2 \left(\frac{\eta}{2} \right) \right) \left(4(1 + \kappa^2)^2 \cos^2 \left(\frac{\theta}{2} \right) + 4(1 - \kappa^2)^2 \sin^2 \left(\frac{\theta}{2} \right) \right) \right E = \gamma_e m_e \\ \langle \mathcal{M}_{fi}^2 \rangle &= \frac{4m_p^2 m_e^2 \epsilon^4 (\gamma_e + 1)^2}{(q^a q_\alpha)^2} \left((1 - \kappa^2)^2 + 4\kappa^2 \cos^2 \left(\frac{\theta}{2} \right) \right) \left \kappa = \frac{\beta_e \gamma_e}{\gamma_e + 1}, \ (1 - \beta_e^2) \gamma_e^2 = 1 \Longrightarrow \\ \langle \mathcal{M}_{fi}^2 \rangle &= \frac{16m_p^2 m_e^2 \epsilon^4}{(q^a q_\alpha)^2} \left(1 + \beta_e^2 \gamma_e^2 \cos^2 \left(\frac{\theta}{2} \right) \right) \dots (1) \\ \text{In t-channel scattering process } q^a q_a = (q^a)^2 = (p_1^a - p_3^a)^2 \\ \text{When the recoil of the proton can be neglected, the initial and final states of the electron are E_1 = E_3 = E, p_1 = p_3 = p \Longrightarrow \\ \text{Hence: } (q^a)^2 = (0, \vec{p}_1 - \vec{p}_3)^2 = -2p^a p_a (1 - \cos(\theta)) = -4p^a p_a \sin^2 \left(\frac{\theta}{2} \right) \overset{(1)}{\Rightarrow} \\ \hline \left(\mathcal{M}_{fi}^2 \right) &= \frac{m_p^2 m_e^2 e^4}{(p^a p_\alpha)^2 \sin^4 \left(\frac{\theta}{2} \right)} \left(1 + \beta_e^2 \gamma_e^2 \cos^2 \left(\frac{\theta}{2} \right) \right) \\ \dots (2) \end{split}$
Ruterford scattering	Electron is non-relativistic, and proton recoil can be neglected $\Rightarrow \beta_e^2 \gamma_e^2 \ll 1 \stackrel{(2)}{\Rightarrow} \langle \mathcal{M}_{fi}^2 \rangle = \frac{m_p^2 m_e^2 e^4}{(p^a p_a)^2 \sin^4(\frac{\theta}{2})} \dots (3)$ The laboratory frame differential cross section can be written as $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{m_p + E_1 - E_1 \cos(\theta)}\right)^2 \langle \mathcal{M}_{fi}^2 \rangle \dots (4) E_1 \approx m_e \ll m_p \Rightarrow$ $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 m_p^2} \langle \mathcal{M}_{fi}^2 \rangle \stackrel{(3)}{\Rightarrow} \frac{d\sigma}{d\Omega} = \frac{m_e^2 e^4}{64\pi^2 (p^a p_a)^2 \sin^4(\frac{\theta}{2})} E_K = \frac{p^a p_a}{2m_e}, e^2 = 4\pi\alpha \Rightarrow \left[\frac{d\sigma}{d\Omega} \right]_{\text{Rutherford}} = \frac{\alpha^2}{16E_K^2 \sin^4(\frac{\theta}{2})} =$
Mott scattering	Electron is relativistic, but proton recoil can still be neglected: $m_e \ll E \ll m_p \Rightarrow \kappa \approx 1 \Rightarrow j_{e\downarrow \uparrow}^{\mu} \approx 0, j_{e\uparrow \downarrow}^{\mu} \approx 0 \stackrel{(2)}{\Rightarrow}$ $\langle \mathcal{M}_{fi}^2 \rangle = \frac{m_p^2 e^4}{E^2 \sin^4(\frac{\theta}{2})} \cos^2(\frac{\theta}{2}) \stackrel{(4),e^2 = 4\pi\alpha}{\Longrightarrow} \left[\left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} = \frac{\alpha^2}{4E^2 \sin^4(\frac{\theta}{2})} \cos^2(\frac{\theta}{2}) \right].$ neglecting extent of proton's charge distribution

Form Factors

General	The form factor accounts for the finite extent of the charge distribution, hence for the phase differences between contributions to the scattered wave from different points of the charge distribution. If $\lambda_{\gamma} \gg r_p$, then contributions are in phase, add constructively. If $\lambda_{\gamma} \ll r_p$, then phase stringly position dependent, negative interference strongly reduces the total amplitude when integrated.		
Matrix Element, Form Factor	$\mathcal{M}_{fi} = \langle \Psi_{f} V(\vec{r}) = \int \frac{Q \cdot \rho(\vec{r}')}{4\pi \vec{r} - \vec{r}' } d^{3}r' \dots (1) \text{ In Born approximation, initial and scattered electrons are expressed as plane waves:}$ $\mathcal{M}_{fi} = \langle \Psi_{f} V(\vec{r}) \Psi_{i} \rangle = \int e^{-i\vec{p}_{3} \cdot \vec{r}} V(\vec{r}) e^{i\vec{p}_{1} \cdot \vec{r}} d^{3}r \xrightarrow{(1)}{\mathcal{M}_{fi}} \mathcal{M}_{fi} = \iint e^{-i\vec{p}_{3} \cdot \vec{r}} \frac{Q \cdot \rho(\vec{r}')}{4\pi \vec{r} - \vec{r}' } e^{i\vec{p}_{1} \cdot \vec{r}} d^{3}r' d^{3}r$ $\mathcal{M}_{fi} = \iint e^{i(\vec{p}_{1} - \vec{p}_{3}) \cdot \vec{r}} \frac{Q \cdot \rho(\vec{r}')}{4\pi \vec{r} - \vec{r}' } d^{3}r' d^{3}r \vec{q} = \vec{p}_{1} - \vec{p}_{3} \Rightarrow \mathcal{M}_{fi} = \iint e^{i\vec{q} \cdot \vec{r}} \frac{Q \cdot \rho(\vec{r}')}{4\pi \vec{r} - \vec{r}' } d^{3}r' d^{3}r = \iint e^{i\vec{q} \cdot \vec{r}} \frac{Q \cdot \rho(\vec{r}')}{4\pi \vec{r} - \vec{r}' } d^{3}r' d^{3}r $ $\mathcal{M}_{fi} = \iint e^{i\vec{q} \cdot (\vec{r} - \vec{r}')} e^{i\vec{q} \cdot \vec{r}'} \frac{Q \cdot \rho(\vec{r}')}{4\pi \vec{r} - \vec{r}' } d^{3}r' d^{3}r \vec{R} \stackrel{\text{def}}{=} \vec{r} - \vec{r}' \Rightarrow \mathcal{M}_{fi} = \int e^{i\vec{q} \cdot \vec{r}} \frac{Q \cdot \rho(\vec{r}')}{4\pi \vec{R} } d^{3}R \int_{equiv. point charge} \mathcal{P}_{Form Factor F(\vec{q}^{2})} $ $\mathcal{M}_{fi} = \mathcal{M}_{fi}^{pt} F(\vec{q}^{2}) \text{ with } F(\vec{q}^{2}) = \int \rho(\vec{r}') e^{i\vec{q} \cdot \vec{r}'} d^{3}r' $ Form factor $F(\vec{q}^{2})$ is a 3D Fourier transform of the charge distribution		
Mott Scattering	$\left[\left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} = \frac{\alpha^2}{4E^2 \sin^4(\frac{\vartheta}{2})} \cos^2\left(\frac{\vartheta}{2} \right) F(\vec{q}^2) ^2 \text{ with } F(\vec{q}^2) = \int \rho(\vec{r}') e^{i\vec{q}\cdot\vec{r}'} d^3r' \right] \text{ accounting for proton's charge distribution}$		

Relativistic Electron-Proton Elastic Scattering and Rosenbluth Formula

General	$e^{-\dots} \xrightarrow{p_1} p_1 \xrightarrow{p_2} p_3 \xrightarrow{p_3} p_1^{\mu} = \begin{pmatrix} E_1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, p_2^{\mu} = \begin{pmatrix} m_p \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, p_3^{\mu} = \begin{pmatrix} E_3 \\ 0 \\ E_3 \sin(\vartheta) \\ E_3 \sin(\vartheta) \end{pmatrix}, p_4^{\mu} = \begin{pmatrix} E_4 \\ p_4^{\chi} \\ p_4^{\chi} \\ p_4^{\chi} \end{pmatrix}$
Matrix Element	$\begin{aligned} & \stackrel{P_{4} \longrightarrow p}{\left(E_{1} / \left(0 / \left(E_{3} \cos(\vartheta) / \left(\frac{p_{1}^{2}}{p_{2}^{3} \cos^{\vartheta}}\right)^{4} + \left(\frac{p_{1}^{\mu} p_{\mu}^{2}}{p_{3}^{\mu} p_{\nu}^{\vartheta}}\right) + \left(\frac{p_{1}^{\mu} p_{\mu}^{4}}{p_{\mu}^{\mu} p_{\nu}^{2} p_{\nu}^{\vartheta}}\right) - m_{p}^{2} \left(p_{1}^{\mu} p_{\mu}^{3}\right) - m_{e}^{2} \left(p_{2}^{\mu} p_{\mu}^{4}\right) + 2m_{p}^{2} m_{e}^{2}\right) \right m_{e}^{2} \approx 0 \\ & \left \left \mathcal{M}_{fl}\right ^{2}\right\rangle = \frac{8e^{4}}{\left(p_{1}^{\alpha} - p_{3}^{\alpha}\right)^{4}} \left(\left(p_{1}^{\mu} p_{\mu}^{2}\right)\left(p_{3}^{\nu} p_{\nu}^{4}\right) + \left(p_{1}^{\mu} p_{\mu}^{4}\right)\left(p_{2}^{\nu} p_{\nu}^{3}\right) - m_{p}^{2} \left(p_{1}^{\mu} p_{\mu}^{3}\right)\right) \right p_{\mu}^{\mu} \text{ not observable: } p_{4}^{\mu} = p_{1}^{\mu} + p_{2}^{\mu} - p_{3}^{\mu} \\ & \left \left \mathcal{M}_{fl}\right ^{2}\right\rangle = \frac{8e^{4}}{\left(p_{1}^{\alpha} - p_{3}^{\alpha}\right)^{4}} \left(\left(p_{1}^{\mu} p_{\mu}^{2}\right)\left(p_{\nu}^{3} (p_{\nu}^{1} + p_{\nu}^{2} - p_{\nu}^{3})\right) + \left(p_{1}^{\mu} \left(p_{\mu}^{1} + p_{\mu}^{2} - p_{\mu}^{3}\right)\right) \left(p_{\nu}^{2} p_{\nu}^{3}\right) - m_{p}^{2} \left(p_{1}^{\mu} p_{\mu}^{3}\right)\right) \\ & \left \left \mathcal{M}_{fl}\right ^{2}\right\rangle = \frac{8e^{4}}{\left(p_{1}^{\alpha} - p_{3}^{\alpha}\right)^{4}} \left(\left(p_{1}^{\mu} p_{\mu}^{2}\right) \frac{\left(p_{3}^{\mu} p_{\nu}^{1} + p_{\nu}^{3} - p_{\nu}^{3} p_{\nu}^{2}\right) - p_{\nu}^{3} p_{\nu}^{3}\right) + \left(p_{1}^{\mu} p_{\mu}^{1} + p_{\mu}^{1} p_{\mu}^{2} - p_{1}^{\mu} p_{\mu}^{3}\right) \left(p_{\nu}^{2} p_{\nu}^{3}\right) - m_{p}^{2} \left(p_{1}^{\mu} p_{\mu}^{3}\right)\right) \\ & \left \left \mathcal{M}_{fl}\right ^{2}\right\rangle = \frac{8e^{4}}{\left(p_{1}^{\alpha} - p_{3}^{\alpha}\right)^{4}} m_{p} E_{\nu} E_{\nu} \left(\left(E_{\nu} - E_{\nu}\right)\left(1 - \cos(\vartheta)\right) + m_{\nu} \left(1 + \cos(\vartheta)\right)\right) \end{aligned}$
	$\begin{aligned} \langle \mathcal{M}_{fl} \rangle &= \frac{m_{p}e^{4}}{(p_{1}^{\alpha} - p_{3}^{\alpha})^{4}} m_{p}E_{1}E_{3} \left((E_{1} - E_{3})\sin^{2}\left(\frac{\vartheta}{2}\right) + m_{p}\cos^{2}\left(\frac{\vartheta}{2}\right) \right) \dots (1) \\ \langle \mathcal{M}_{fl} ^{2} \rangle &= \frac{8e^{4}}{(p_{1}^{\alpha} - p_{3}^{\alpha})^{4}} 2m_{p}E_{1}E_{3} \left((E_{1} - E_{3})\sin^{2}\left(\frac{\vartheta}{2}\right) + m_{p}\cos^{2}\left(\frac{\vartheta}{2}\right) \right) \dots (1) \\ (p_{1}^{\alpha} - p_{3}^{\alpha})^{2} &= q_{\alpha}q^{\alpha} = p_{1}^{\alpha}p_{\alpha}^{1} + p_{3}^{\alpha}p_{\alpha}^{3} - 2p_{1}^{\alpha}p_{\alpha}^{3} = m_{e}^{2} + m_{e}^{2} - 2E_{1}E_{3}(1 - \cos(\vartheta)) \approx -2E_{1}E_{3}(1 - \cos(\vartheta)) = -4E_{1}E_{3}\sin^{2}\left(\frac{\vartheta}{2}\right) \stackrel{(1)}{\Longrightarrow} \\ \langle \mathcal{M}_{fl} ^{2} \rangle &= \frac{16e^{4}}{16E_{1}^{2}E_{3}^{2}\sin^{4}\left(\frac{\vartheta}{2}\right)} m_{p}E_{1}E_{3} \left((E_{1} - E_{3})\sin^{2}\left(\frac{\vartheta}{2}\right) + m_{p}\cos^{2}\left(\frac{\vartheta}{2}\right) \right) = \frac{m_{p}e^{4}}{E_{1}E_{3}\sin^{4}\left(\frac{\vartheta}{2}\right)} \left(\underbrace{(E_{1} - E_{3})}_{-q_{\alpha}q^{\alpha}/(2m_{p})} \sin^{2}\left(\frac{\vartheta}{2}\right) + m_{p}\cos^{2}\left(\frac{\vartheta}{2}\right) \right) = \frac{m_{p}e^{4}}{E_{1}E_{3}\sin^{4}\left(\frac{\vartheta}{2}\right)} \left(\left(\sum_{q=1}^{2} - \sum_{q=1}^{2} \sin^{2}\left(\frac{\vartheta}{2}\right) + m_{p}\cos^{2}\left(\frac{\vartheta}{2}\right) \right) = \frac{m_{p}e^{4}}{E_{1}E_{3}\sin^{4}\left(\frac{\vartheta}{2}\right)} \left(\cos^{2}\left(\frac{\vartheta}{2}\right) - \frac{q_{\alpha}q^{\alpha}}{2m_{p}^{2}}\sin^{2}\left(\frac{\vartheta}{2}\right) \right) \right Q^{2} \stackrel{\text{def}}{=} -q_{\alpha}q^{\alpha} \end{aligned}$
Diff. cross- section	$\frac{ \langle \mathcal{M}_{fi} ^2 \rangle}{ \langle \mathcal{M}_{fi} ^2 \rangle} = \frac{m_p^2 e^4}{E_1 E_3 \sin^4\left(\frac{\vartheta}{2}\right)} \left(\cos^2\left(\frac{\vartheta}{2}\right) + \frac{Q^2}{2m_p^2} \sin^2\left(\frac{\vartheta}{2}\right)\right) \dots (2)$ $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{m_p E_1}\right)^2 \left\langle \left \mathcal{M}_{fi}\right ^2 \right\rangle \stackrel{(2)}{\Rightarrow} \frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4\left(\frac{\vartheta}{2}\right) E_1} \left(\cos^2\left(\frac{\vartheta}{2}\right) + \frac{Q^2}{2m_p^2} \sin^2\left(\frac{\vartheta}{2}\right)\right) \text{ with } Q^2 \stackrel{\text{def}}{=} -q_\mu q^\mu \dots (3)$
Rosenbluth Formula	The finite size of the proton can be accounted for in (3) by introducing two form factors: $G_E(Q^2)$ for the proton's charge distribution and $G_M(Q^2)$ for the magnetic moment distribution of the proton. This leads to the most general Lorentz-invariant form for electron-proton scattering via exchange of a single proton, the Rosenbluth formula: $ \frac{d\sigma}{d\Omega} = \underbrace{\frac{a^2}{4E_1^2 \sin^4(\frac{\sigma}{2})}}_{\text{Rutherford}} \underbrace{\frac{E_3}{E_1}}_{\text{recoil}} \left(\underbrace{\frac{G_E^2 + \tau G_M^2}{2} \cos^2\left(\frac{\sigma}{2}\right)}_{\text{erspin}} + \underbrace{2\tau G_M^2 \sin^2\left(\frac{\sigma}{2}\right)}_{\text{magnetic term}}}_{\text{(p^+ spin)}} \right) \text{ with } \tau \stackrel{\text{def}}{=} \frac{Q^2}{4m_p^2} = -\frac{q_\mu q^\mu}{4m_p^2} $

Electron-Proton Inelastic Scattering, Q², W², Bjorken-x, and other Kinematic Variables

General	Because of the finite size of the proton, elastic scattering decreases rapidly with energy. High- energy $e^{-}p$ interactions are dominated by inelastic scattering processes. The hadronic final state resulting from the break-up of the proton consists of many particles. The invariant mass of the hadronic system, denoted W , depends on the four-momentum of the virtual photon, $W^2 = p_{\mu}^4 p_{\mu}^4 = (p_{\mu}^2 + q^{\mu})^2$. In elastic scattering the invariant mass of the final state is the mass of the proton and it is described in terms of the electron scattering angle alone. Now we have two degrees of freedom, meaning that the kinematics must be specified by two quantities, which are usually chosen from the Lorentz-invariant quantities W^2 , x , y , v and Q^2					
Q ²	$ \frac{Q^2 \stackrel{\text{def}}{=} -q^{\mu}q_{\mu} \ge 0}{Q^2 = -(p_1^{\mu} - p_3^{\mu})^2} = -p_1^{\mu}p_{\mu}^1 - p_3^{\mu}p_{\mu}^3 + 2p_1^{\mu}p_{\mu}^3 = -m_e^2 - m_e^2 + 2E_1E_3(1 - \cos(\vartheta)) m_e^2 \approx 0 \Longrightarrow $ $ Q^2 \approx 2E_1E_3(1 - \cos(\vartheta)) \Longrightarrow \boxed{Q^2 = 4E_1E_3\sin^2\left(\frac{\vartheta}{2}\right)} \dots (2) $					
W ²	$\frac{W^2 \stackrel{\text{\tiny{def}}}{=} p_4^{\mu} p_{\mu}^4 \ge m_p^2}{W^2 + Q^2 - p_2^{\mu} p_{\mu}^2 = 2p_2^{\mu} q_{\mu} + p_2^{\mu} p_{\mu}^2 + 2p_2^{\mu} q_{\mu} \Longrightarrow W^2 - q^{\mu} q_{\mu} - p_2^{\mu} p_{\mu}^2 = 2p_2^{\mu} q_{\mu} \stackrel{(1)}{\Longrightarrow}}$					
Bjorken <i>x</i> ('elasticity')	$x \stackrel{\text{def}}{=} \frac{Q^2}{2p_2^{\mu}q_{\mu}} \dots (5) \stackrel{\text{(4)}}{\Rightarrow} x = \frac{Q^2}{Q^2 + W^2 - m_p^2} \dots (6) \begin{array}{l} \text{Because } W^2 \ge m_p^2 \text{ and } Q^2 \ge 0 \implies \boxed{0 \le x \le 1} \\ \text{When } x = 1 \implies W^2 = m_p^2 \implies \text{elastic scattering} \end{array}$					
inelasticity y (fractional energy loss)	$ \begin{array}{c} y \stackrel{\text{def}}{=} \frac{p_2^{\mu} q_{\mu}}{p_2^{\nu} p_2^{\nu}} \dots (7) \Rightarrow & \text{In the frame where the } \\ y = 1 - \frac{E_3}{E_1} \dots (8) & \text{proton is at } \\ y = 1 - \frac{E_3}{E_1} \dots (8) & \text{rest:} \end{array} \begin{array}{c} \begin{pmatrix} E_1 \\ 0 \\ 0 \\ E_1 \end{pmatrix}, p_2^{\mu} = \begin{pmatrix} m_p \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}, p_3^{\mu} = \begin{pmatrix} E_3 \\ E_3 \sin(\vartheta) \\ 0 \\ E_3 \cos(\vartheta) \end{pmatrix}, q^{\mu} = \begin{pmatrix} E_1 - E_3 \\ p_1^{\nu} - p_3^{\nu} \\ p_1^{\nu} - p_$					
energy loss v	Sometimes it is more convenient to work in terms of energies rather than the fractional energy loss described in y. $v \stackrel{\text{def}}{=} \frac{p_2^{\mu}q_{\mu}}{m_p} \dots (9) \text{ In the frame where the proton is at rest: } v = E_1 - E_3 \dots (10)$					
Relations	$x = \frac{Q^2}{2m_p \nu} \dots (11) x = \frac{2m_p}{s - m_p^2} \nu \dots (12) Q^2 = (s - m_p^2) xy \dots (13)$					
Inelastic scattering at low Q ²	$\int_{2.0}^{500} \int_{2.0}^{6} \int_{1.8}^{6-4.879 \text{ GeV}} \int_{1.8}^{6-4.879 \text{ GeV}} \int_{1.8}^{6-1.0^{\circ}} \int_{1.8}^{6-4.879 \text{ GeV}} \int_{1.879 \text{ GeV}} \int_{1.8}^{6-4.879 \text{ GeV}} \int_{1$					

Deep inelastic scattering

Introduction	The most general Lorentz-invariant <i>elastic</i> scattering formula, the Rosenbluth formula, can be re-written using Q^2 and y : $\frac{d\sigma}{dQ^2} = \frac{4\pi a^2}{Q^4} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} \left(1 - y - \frac{m_B^2 y^2}{Q^2}\right) + \frac{1}{2} y^2 G_M^2\right)$ The Q^2 dependence of G_E and G_M and $\tau = \frac{Q^2}{4m_p}$ can be absorbed by $f_1(Q^2)$, $f_2(Q^2)$ $\frac{d\sigma}{dQ^2} = \frac{4\pi a^2}{Q^4} \left(\left(1 - y - \frac{m_B^2 y^2}{Q^2}\right) f_2(Q^2) + \frac{1}{2} y^2 f_1(Q^2)\right)$ In this form: $f_1(Q^2)$ magnetic $f_2(Q^2)$ magnetic & electric interaction					
Inelastic $ep \rightarrow eX$ scattering	$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left(\left(1 - y - \frac{m_p^2 y^2}{Q^2}\right) \frac{F_2(x,Q^2)}{x} + y^2 F_1(x,Q^2) \right) \text{ with "}$	structure	functions" $\underbrace{F_1(x,Q^2)}_{magnetic}$, $F_2(x,Q^2)$			
Deep inelastic	$Q^2 \gg m_p^2 y^2 \Longrightarrow \frac{d^2 \sigma}{dx dQ^2} \approx \frac{4\pi \alpha^2}{Q^4} \left((1-y) \frac{F_2(x,Q^2)}{x} + y^2 F_1(x,Q^2) \right)$)				
Bjorken scaling	$ \begin{array}{c} \begin{array}{c} 0.5 \\ 0.4 \\ \hline \\ 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Callan- Cross Relation	$F_{2}(x) = 2x F_{1}(x)$			

Symmetries in Quantum Mechanics

General:	Physical predictions must be invariant under a symmetry transformation $\Psi \to \Psi' = \widehat{U}\Psi \Rightarrow$ $\langle \Psi \Psi \rangle = \langle \Psi' \Psi' \rangle = \langle \widehat{U}\Psi \widehat{U}\Psi \rangle = \langle \Psi \widehat{U}^{\dagger}\widehat{U} \Psi \rangle \Rightarrow \boxed{\widehat{U}^{\dagger}\widehat{U} = 1} (1) unitary$ Eigenstates of the Hamiltonian must be unchanged: $\widehat{H}\Psi = \widehat{H}\Psi' = \widehat{H}\widehat{U}\Psi = \widehat{U}\Psi = \widehat{U}E\Psi = \widehat{U}\widehat{H}\Psi \Rightarrow \boxed{[\widehat{H},\widehat{U}] = 0} (2)$
Generator \hat{G}	Infinitesimal transformation: $\hat{U} = 1 + i\epsilon\hat{G} \dots (3) \ 1 = \hat{U}^{\dagger}\hat{U} \stackrel{(3)}{\Rightarrow} 1 = (1 - i\epsilon\hat{G}^{\dagger})(1 + i\epsilon\hat{G}) = 1 + i\epsilon\hat{G} - i\epsilon\hat{G}^{\dagger} + \epsilon^{2}\hat{G}^{\dagger}G \Rightarrow$ $1 = 1 + i\epsilon(\hat{G} - \hat{G}^{\dagger}) \Rightarrow \boxed{\hat{G} = \hat{G}^{\dagger}} \dots (4)$ hermitian (2) $\Rightarrow \hat{H}\hat{U} - \hat{U}\hat{H} = 0 \stackrel{(3)}{\Rightarrow} \hat{H}(1 + i\epsilon\hat{G}) - (1 + i\epsilon\hat{G})\hat{H} = 0 \Rightarrow \hat{H}' + i\epsilon\hat{H}\hat{G} - \hat{H}' - i\epsilon\hat{G}\hat{H} \Rightarrow \boxed{[\hat{H}, \hat{G}] = 0} \dots (5)$
symmetry ⇒ conservation law	Schrödinger: $i\hbar \frac{\partial}{\partial t}\Psi = \widehat{H}\Psi \stackrel{h=1}{\Longrightarrow} i\frac{\partial}{\partial t}\Psi = \widehat{H}\Psi \implies \frac{\partial}{\partial t}\Psi = \frac{1}{i}\widehat{H}\Psi \implies \dot{\Psi} = -i\widehat{H}\Psi \dots (6a) \implies \dot{\Psi}^{\dagger} = i\Psi^{\dagger}\widehat{H}\dots (6b)$ $\langle A \rangle = \int \Psi^{\dagger}\widehat{A}\Psi d^{3}x \frac{\partial}{\partial t} \implies \frac{\partial}{\partial t}\langle A \rangle = \frac{\partial}{\partial t}\int \Psi^{\dagger}\widehat{A}\Psi d^{3}x \implies \frac{\partial}{\partial t}\langle A \rangle = \int (\dot{\Psi}^{\dagger}\widehat{A}\Psi + \Psi^{\dagger}\widehat{A}\dot{\Psi}) d^{3}x \stackrel{(6ab)}{\Longrightarrow}$ $\frac{\partial}{\partial t}\langle A \rangle = \int (i\Psi^{\dagger}\widehat{H}\widehat{A}\Psi - i\Psi^{\dagger}\widehat{A}\widehat{H}\Psi) d^{3}x = i\int \Psi^{\dagger}(\widehat{H}\widehat{A} - \widehat{A}\widehat{H})\Psi d^{3}x = i\langle\Psi \widehat{H}\widehat{A} - \widehat{A}\widehat{H} \Psi\rangle \implies \boxed{\frac{\partial}{\partial t}\langle A \rangle = i\langle[\widehat{H},\widehat{A}]\rangle}$ Ehrenfest Now let $\widehat{A} = \widehat{G}$, then $\frac{\partial}{\partial t}\langle G \rangle = i\langle[\widehat{H},\widehat{G}]\rangle \stackrel{(5)}{\implies} \boxed{\frac{\partial}{\partial t}\langle G \rangle} = 0$
Example: translational invariance	1D: $x \to x + \varepsilon \Longrightarrow \Psi(x) \to \Psi'(x) = \Psi(x + \varepsilon) \stackrel{Taylor}{=} \Psi(x) + \varepsilon \frac{\partial \Psi}{\partial x} + \dots = \left(1 + \varepsilon \frac{\partial}{\partial x}\right) \Psi(x) = \hat{U} \Psi(x) \stackrel{(3)}{=} \left(1 + i\varepsilon \hat{G}\right) \Psi(x)$ $\Rightarrow i\varepsilon \hat{G} \doteq \varepsilon \frac{\partial}{\partial x} \Longrightarrow \left[\hat{G} \doteq \frac{1}{i} \frac{\partial}{\partial x} = \hat{p}_x\right] \dots$ translational invariance \Leftrightarrow conservation of momentum Infinitesimal transformation: $\hat{U}_{\varepsilon} = 1 + i\varepsilon \hat{p}_x$ Finite transformation: $\hat{U}(x_0) = \lim_{n \to \infty} \left(1 + i\frac{x_0}{n}\hat{p}_x\right)^n = e^{ix_0\hat{p}_x} = e^{x_0\frac{\partial}{\partial x}}$ $\Psi'(x) = \hat{U} \Psi(x) = e^{x_0\frac{\partial}{\partial x}}\Psi(x) \stackrel{Taylor}{=} \left(1 + x_0\frac{\partial}{\partial x} + \frac{x_0^2}{2!}\frac{\partial^2}{\partial x^2} + \frac{x_0^3}{3!}\frac{\partial^3}{\partial x^3} + \cdots\right)\Psi(x) \stackrel{Taylor}{=} \Psi(x + x_0)$

SU(2) Isospin Flavour Symmetry of the Strong Interaction (Isospin Representation of Quarks)

Idea:	$\hat{H} = \hat{H}_0 + \hat{H}_{strong} + \hat{H}_{EM}$ because $\hat{H}_{EM} \ll \hat{H}_{strong}$, and $m_u \approx m_d$, there is an (ud) flavor symmetry. We define $ u\rangle$ and $ d\rangle$ to be just two so-called Isospin-states of the same particle.					
Analogy to normal spin	"normal" spin-up-particle: $ \uparrow\rangle \stackrel{c}{=} \begin{pmatrix} 1\\0 \end{pmatrix} = \chi(s, m_s) = \chi \begin{pmatrix} \frac{1}{2}, +\frac{1}{2} \end{pmatrix} \Leftrightarrow$ up-quark isospin: $ u\rangle \stackrel{c}{=} \begin{pmatrix} 1\\0 \end{pmatrix} = \phi(I, I_3) = \phi \begin{pmatrix} \frac{1}{2}, +\frac{1}{2} \end{pmatrix}$ "normal" spin-down-particle: $ \downarrow\rangle \stackrel{c}{=} \begin{pmatrix} 0\\1 \end{pmatrix} = \chi(s, m_s) = \chi \begin{pmatrix} \frac{1}{2}, -\frac{1}{2} \end{pmatrix} \Leftrightarrow$ down-quark isospin: $ d\rangle \stackrel{c}{=} \begin{pmatrix} 0\\1 \end{pmatrix} = \phi(I, I_3) = \phi \begin{pmatrix} \frac{1}{2}, -\frac{1}{2} \end{pmatrix}$ "normal" \hat{S}^2 operator: $\hat{S}^2 \chi(s, m_s) = s(s+1) \chi(s, m_s) \Leftrightarrow$ isospin \hat{T}^2 operator: $\hat{T}^2 \phi(I, I_3) = I(I+1) \phi(I, I_3)$ "normal" \hat{S}_z operator: $\hat{S}_z \chi(s, m_s) = m_s \chi(s, m_s) \Leftrightarrow$ isospin \hat{T}_3 operator: $\hat{T}_3 \phi(I, I_3) = I_3 \phi(I, I_3)$					
Symmetrie trafo SU(2)	$ u\rangle \cong \begin{pmatrix} 1\\0 \end{pmatrix}^{\{T_3\}}; d\rangle \cong \begin{pmatrix} 0\\1 \end{pmatrix}^{\{T_3\}} \Longrightarrow \begin{pmatrix} u'\\d' \end{pmatrix} = \widehat{\mathbb{U}}(\vec{a}) \begin{pmatrix} u\\d \end{pmatrix} \text{ with } \widehat{\mathbb{U}}(\vec{a}) = e^{i\vec{a}\cdot\vec{T}} \in \mathrm{SU}(2) \Longrightarrow \widehat{U}\widehat{U}^{\dagger} = 1, \ \det(U) = 1$					
Generators	$\widehat{\mathbb{U}}(\vec{\alpha}) = e^{i\alpha_l \hat{G}_l} \text{ with } \hat{G}_l \in \{\hat{T}_1, \hat{T}_2, \hat{T}_3\} \text{ and } \hat{\vec{T}} = \frac{1}{2}\hat{\vec{\sigma}} \text{Algebra: } \left[\hat{T}_1, \hat{T}_2\right] = i\hat{T}_3, \left[\hat{T}_2, \hat{T}_3\right] = i\hat{T}_1, \left[\hat{T}_3, \hat{T}_1\right] = i\hat{T}_2 \Longrightarrow \left[\hat{T}_k, \hat{T}_l\right] = i\varepsilon_{klm}\hat{T}_m$					
Ladder operators	$ \hat{T}_{+} d\rangle = u\rangle, \hat{T}_{+} u\rangle = 0\rangle \text{ with } \hat{T}_{+} = \hat{T}_{1} + i\hat{T}_{2}; \hat{T}_{-} d\rangle = 0\rangle, \hat{T}_{-} u\rangle = d\rangle \text{ with } \hat{T}_{-} = \hat{T}_{1} - i\hat{T}_{2} $	$ \begin{array}{c} & \stackrel{\hat{T}_{i}}{\longrightarrow} \\ & \stackrel{\hat{T}_{i}}{\longrightarrow} \\ d & u \\ & \stackrel{1}{\longrightarrow} \\ \\ \\ & \stackrel{1}{\longrightarrow} \\ \\ & \stackrel{1}{\longrightarrow} \\ \\ & \stackrel{1}{\longrightarrow} \\ \\ & \stackrel{1}{\longrightarrow} \\ \\ \\ & \stackrel{1}{\longrightarrow} \\ \\ \\ \\ & \stackrel{1}{\longrightarrow} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				

Combining 2 Up- or Down-Quarks or 2 Spin-Half Particles with SU(2)

Note	Note: Two-quark bound states combining only u and d are hypothetical, because the total color cannot add up to white. But this concept serves as a basis for combining three quarks to a Baryon state.					
combining isospins	$\begin{split} & I_3 = I_3^{(1)} + I_3^{(2)} \\ & \left I^{(1)} - I^{(1)} \right \leq I \leq \left I^{(1)} + I^{(1)} \right \end{split}$	combining spins	$ \begin{vmatrix} m_s = m_s^{(1)} + m_s^{(2)} \\ s^{(1)} - s^{(2)} \le s \le s^{(1)} + s^{(2)} \end{vmatrix} $	analogy $ \begin{array}{l} M_J = m_s + m_l \\ s-l \leq J \leq s+l \end{array} $		
configuration	Both particles can each take on two different states $(u\rangle, d\rangle)$					
space	Hence, the total configuration space is $2\otimes 2$. Can be reduced to $3_S \oplus 1_A$.					
symmetric	• Maximum state $\phi_S(1,+1) = \phi^{(1)}\left(\frac{1}{2},+\frac{1}{2}\right)\phi^{(2)}\left(\frac{1}{2},+\frac{1}{2}\right) = uu\rangle$ the <i>S</i> in ϕ_S stands for "symmetric"					
Isospin	• $\phi_S(1,0) = \hat{T}\phi_S(1,+1) = \hat{T} uu\rangle = \hat{T}^{(1)} uu\rangle + \hat{T}^{(2)} uu\rangle = du\rangle + ud\rangle \stackrel{norm.}{=} \frac{1}{\sqrt{2}}(du\rangle + ud\rangle).$					
triplet	• $\phi_S(1,-1) = \hat{T}(du\rangle + ud\rangle) = \hat{T}^{(1)}(du\rangle + ud\rangle) + \hat{T}^{(2)}(du\rangle + ud\rangle) = 0 + dd\rangle + dd\rangle + 0 \stackrel{norm.}{=} dd\rangle$					
lsospin singlet	There is always just one state with $I_3 = I_3^{max}$, and just one with $I_3 = I_3^{min} = -I_3^{max}$. Hence, the 4 th state can only be orthogonal to the "middle" state $\phi_S(1,0)$: $\phi_A(0,0) = \perp \phi_S(1,0) = \frac{1}{\sqrt{2}}(du\rangle - ud\rangle)$ the <i>A</i> in ϕ_A stands for "antisymmetric"					
Spin singlet	Because the SU(2) algebra for combining spin-half is the same as for isospin, the possible spin wave functions of two quarks are constructed in the same manner. Hence, the combination of two spin-half particles gives:					
and triplet	spin triplet: $\chi_S(1,+1) = \uparrow\uparrow\rangle, \chi_S(1,0) = \frac{1}{\sqrt{2}}(\uparrow\downarrow\rangle + \downarrow\uparrow\rangle), \chi_S(1,-1) = \downarrow\downarrow\rangle$; singlet: $\chi_A(0,0) = \frac{1}{\sqrt{2}}(\uparrow\downarrow\rangle - \downarrow\uparrow\rangle)$					

Combining 3 Up- or Dov	vn-Quarks or 3 Spin-Hal	f Particles with SU(2)
------------------------	-------------------------	------------------------

0					
Configura- tion Space	All three particles can each take on two different states $(u\rangle, d\rangle$). Hence, the total configuration space is $2\otimes 2\otimes 2$. This can be reduced to $4_{S} \oplus 2_{MS} \oplus 2_{MA}$: A symmetric quadruplet, a mixed symmetric doublet, and a mixed antisymmetric doublet $I = \frac{3}{2}$: $I = \frac{3}{2}$: $I = \frac{1}{2}$: $I = \frac{1}{2$				
Symmetric Isospin Quadruplet	• Maximum state $\phi_{S}\left(\frac{3}{2}, +\frac{3}{2}\right) = uuu\rangle$ • $\phi_{S}\left(\frac{3}{2}, +\frac{1}{2}\right) = \hat{T}_{-}\phi_{S}\left(\frac{3}{2}, +\frac{3}{2}\right) = \hat{T}_{-} uuu\rangle \stackrel{norm.}{=} \frac{1}{\sqrt{3}}(duu\rangle + udu\rangle + uud\rangle)$ • $\phi_{S}\left(\frac{3}{2}, -\frac{1}{2}\right) = \hat{T}_{-}\phi_{S}\left(\frac{3}{2}, +\frac{1}{2}\right) = \hat{T}_{-}(duu\rangle + udu\rangle + uud\rangle) \stackrel{norm.}{=} \frac{1}{\sqrt{3}}(duu\rangle + dud\rangle + dud\rangle)$ • $\phi_{S}\left(\frac{3}{2}, -\frac{3}{2}\right) = \hat{T}_{-}\phi_{S}\left(\frac{3}{2}, -\frac{1}{2}\right) = \hat{T}_{-}(udd\rangle + dud\rangle + dud\rangle) \stackrel{norm.}{=} ddd\rangle$				
Mixed Symmetric Doublet	There can be just one state with $I_3 = I_3^{max} = \frac{3}{2}$, and just one with $I_3 = I_3^{min} = -I_3^{max} = -\frac{3}{2}$. Therefore, we are looking for further two (mixed symmetric) states with $I = \frac{1}{2}$. • We take the symmetric two-quark state $\phi_S(1, +1) = uu\rangle$ which we couple with a third down-quark to reach $I_3 = \frac{1}{2}$. • But we can also reach $I_3 = \frac{1}{2}$ if we couple $\phi_S(1, 0) = \frac{1}{\sqrt{2}}(du\rangle + ud\rangle)$ with a third up-quark. • One solution is a superposition of these states: $\phi_{MS}(\frac{1}{2}, +\frac{1}{2}) = \alpha uu\rangle d\rangle + \beta (du\rangle + ud\rangle) u\rangle = \alpha uud\rangle + \beta (duu\rangle + udu\rangle).$ • Conditions to determine α and β : $\left(\phi_S(\frac{3}{2}, +\frac{1}{2}) \mid \phi_{MS}(\frac{1}{2}, +\frac{1}{2})\right) = 0$ (orthogonality) and normalization $\alpha^2 + \beta^2 = 1 \Rightarrow \phi_{MS}(\frac{1}{2}, +\frac{1}{2}) = \frac{1}{\sqrt{6}}(2 uud\rangle - udu\rangle - duu\rangle)$ • We reach the second mixed symmetric state from here with \hat{T} : $\phi_{MS}(\frac{1}{2}, -\frac{1}{2}) = \hat{T}\phi_{MS}(\frac{1}{2}, +\frac{1}{2}) = \hat{T}(2 uud\rangle - udu\rangle - udu\rangle - udu\rangle - udu\rangle - udu\rangle)$				
Mixed Anti- Symmetric Doublet	There are further two (mixed antisymmetric) states with $I = \frac{1}{2}$. • We take the antisymmetric two-quark singlet state $\phi_A(1,0)$ which we couple with a third up-quark to reach $I_3 = \frac{1}{2}$. $\phi_{MA}\left(\frac{1}{2}, +\frac{1}{2}\right) = (du\rangle - ud\rangle) u\rangle = \frac{1}{\sqrt{2}}(udu\rangle - duu\rangle).$ • We reach the other mixed antisymmetric state with the \hat{T} operator $\phi_{MA}\left(\frac{1}{2}, -\frac{1}{2}\right) = \hat{T}\phi_{MA}\left(\frac{1}{2}, +\frac{1}{2}\right) = \hat{T}(udu\rangle - duu\rangle) = \frac{1}{\sqrt{2}}(udd\rangle - dud\rangle).$				
Spin	Because the SU(2) algebra for combining spin-half is the same as for isospin, the possible spin wave functions of three quarks are constructed in the same manner. Hence, the combination of three spin-half particles give: - a symmetric Spin Quadruplet: $\chi_S\left(\frac{3}{2}, +\frac{3}{2}\right) = \uparrow\uparrow\uparrow\rangle, \chi_S\left(\frac{3}{2}, +\frac{1}{2}\right) = \frac{1}{\sqrt{3}}(\uparrow\uparrow\downarrow\rangle + \uparrow\downarrow\uparrow\rangle + \downarrow\uparrow\uparrow\rangle), \chi_S\left(\frac{3}{2}, -\frac{1}{2}\right) = \frac{1}{\sqrt{3}}(\uparrow\downarrow\downarrow\rangle + \downarrow\uparrow\downarrow\rangle + \downarrow\downarrow\uparrow\rangle), \chi_S\left(\frac{3}{2}, -\frac{3}{2}\right) = \downarrow\downarrow\downarrow\rangle$ - a mixed symmetric Spin Doublet: $\chi_{MS}\left(\frac{1}{2}, +\frac{1}{2}\right) = \frac{1}{\sqrt{6}}(2 \uparrow\uparrow\downarrow\rangle - \uparrow\downarrow\uparrow\uparrow\rangle - \downarrow\uparrow\uparrow\uparrow\rangle), \chi_{MS}\left(\frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{\sqrt{6}}(2 \downarrow\downarrow\uparrow\rangle - \downarrow\uparrow\downarrow\rangle - \uparrow\downarrow\downarrow\rangle)$ - a mixed antisymmetric Spin Doublet: $\chi_{MA}\left(\frac{1}{2}, +\frac{1}{2}\right) = \frac{1}{\sqrt{2}}(\uparrow\downarrow\uparrow\rangle - \downarrow\uparrow\uparrow\uparrow\rangle), \chi_{MS}\left(\frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{\sqrt{2}}(\uparrow\downarrow\downarrow\rangle - \downarrow\uparrow\downarrow\rangle)$				

Ground State Baryon Wave Functions

Symmetries	$\Psi = \phi_{flavor}\chi_{spin}\xi_{color}\eta_{space} \text{ Quarks are fermions} \Rightarrow \Psi \stackrel{!}{=} \Psi_A. \text{ Always: } \xi_{color} = \xi_A \text{ with } L = 0: \eta_{space} = \eta_S \Rightarrow \Psi_A = \phi_{flavor}\chi_{spin}\xi_A\eta_S \Rightarrow \phi_{flavor}\chi_{spin} \text{ must be symmetric (for } L = 0)$								
Δ-Baryons	$\Psi_A = \frac{\phi_S \chi_S \xi_A \eta_S}{I = \frac{3}{2}, s = \frac{3}{2}}$	$ \begin{array}{c} \text{ddd} \frac{1}{\sqrt{3}} \\ \underline{\Delta^{-}} \\ -\frac{3}{2} \end{array} $	$\frac{d^0}{-\frac{1}{2}}$	$\frac{\frac{1}{\sqrt{3}}(uud + udu + duu)}{\Delta^+}$ + $\frac{1}{2}$	$\downarrow uuu $	Neutron Proton	$\Psi_{A} = \frac{\frac{1}{\sqrt{2}}(\phi_{MS}\chi_{MS} + \phi_{MA}\chi_{MA})}{symmetric}\xi_{A}\eta_{S}$ $I = \frac{1}{2}, S = \frac{1}{2}$	n -12	$\xrightarrow{p}_{+\frac{1}{2}}$ l_3
spin-up Proton	$ p\uparrow\rangle = \frac{1}{\sqrt{2}} \left(\phi_{MS} \left(\right) \\ p\uparrow\rangle = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{6}} (2) \right) \\ p\uparrow\rangle = \frac{1}{\sqrt{18}} (2u\uparrow u) $	$\frac{1}{2}, +\frac{1}{2} \chi_M$ $uud \rangle - u$ $1\uparrow d \downarrow - u \uparrow u$	$s\left(\frac{1}{2}, +\frac{1}{2}\right) + du\rangle - duu $ $\downarrow d\uparrow - u\downarrow u\uparrow c$	$\frac{\phi_{MA}\left(\frac{1}{2},+\frac{1}{2}\right)}{\sqrt{6}}\left(2 \uparrow\uparrow\downarrow\rangle\right)$ $\frac{1}{\sqrt{6}}\left(2 \uparrow\uparrow\downarrow\rangle\right)$ $d\uparrow+2u\uparrow d\downarrow u$	$ \begin{array}{l} \chi_{MA}\left(\frac{1}{2}, \\ - \uparrow\downarrow\uparrow\rangle \\ \uparrow - u\uparrow d\uparrow u \end{array} $	$+\frac{1}{2})) \Longrightarrow$ $- \downarrow\uparrow\uparrow\rangle) +$ $\downarrow - u\downarrow d\uparrow\iota$	$\frac{1}{\sqrt{2}}(udd\rangle - dud\rangle)\frac{1}{\sqrt{2}}(\uparrow\downarrow\uparrow\rangle - \downarrow\uparrow\uparrow\rangle$ $i\uparrow + 2d\downarrowu\uparrowu\uparrow - d\uparrowu\uparrowu - d\uparrowu\downarrowu\uparrow)$)))⇒	

Isospin Representation of Anti-Quarks

Definition:	$ \overline{u}\rangle \triangleq \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \overline{d}\rangle \triangleq \begin{pmatrix} -1 \\ 0 \end{pmatrix} \implies \overline{q}\rangle \triangleq \begin{pmatrix} -\overline{d} \\ \overline{u} \end{pmatrix}$	Symmetry Trafo $\left \overline{q}'\right\rangle = \widehat{\mathbb{U}}(\vec{\alpha})\left \overline{q}'\right\rangle$ with $\widehat{\mathbb{U}}(\vec{\alpha}) = e^{i\vec{\alpha}\cdot\vec{\alpha}}$	₹	$-\overline{d}$ $+\frac{1}{2}$ I_3
Ladder oper.	$ \widehat{T}_+ \overline{u} angle = - \overline{d} angle, \widehat{T}_+ \overline{d} angle = 0 angle$ with $\widehat{T}_+ = \widehat{T}_1$ -	$+i\hat{T}_2; \ \hat{T} \overline{u} angle = 0 angle, \hat{T} \overline{d} angle = \overline{u} angle \text{ with } \hat{T} = \hat{T}_1 - \hat{T}_1$	i \hat{T}_2	

SU(3) Flavor Symmetry of the Strong Interaction

Idea:	The SU(2) flavor symmetry is almost exact, as $m_u \approx m_d$. As \hat{H}_{strong} treats uds equally, we can include the strange-quark with SU(3). However, the symmetry is not perfect, because the difference between m_S and $m_{u/d}$ is approx. 100 MeV
Symmetry Trafo	$ \begin{pmatrix} u' \\ d' \\ s' \end{pmatrix} = \hat{U} \begin{pmatrix} u \\ d \\ s \end{pmatrix} \text{ with } \hat{U} \text{ 3x3 matrix; } \hat{U} \hat{U}^{\dagger} = 1, \det(\hat{U}) = 1 \hat{U} = e^{i\vec{\alpha}\cdot\vec{T}} = e^{i\alpha_i\cdot\vec{T}_i}; i = 1 \dots 8 \text{ with } \boxed{\hat{T}_i = \frac{1}{2}\hat{\lambda}_i} $
Generators (Gell-Mann matrices)	$\begin{aligned} & SU(3) \text{ requires } 3^2 - 1 = 8 \text{ generators. (Remark: A complex 3x3-matrix would have 18 parameters. The condition } \widehat{\mathcal{U}}\widehat{\mathcal{U}}^+ = 1 \\ & reduces this to 9 parameters; \underbrace{\det(\widehat{\mathcal{U}}) = 1}_{reduces further to 8 parameters). Suitable generators are e.g. the Gell-Mann \\ & \mathsf{matrices \{\widehat{\lambda}_1, \widehat{\lambda}_2, \widehat{\lambda}_3, \widehat{\lambda}_4, \widehat{\lambda}_5, \widehat{\lambda}_6, \widehat{\lambda}_7, \widehat{\lambda}_8\} \text{ with } \underbrace{\mathrm{Tr}(\widehat{\lambda}_i) = 0}_{reduces further to 8 parameters). Suitable generators are e.g. the Gell-Mann \\ & \mathsf{matrices \{\widehat{\lambda}_1, \widehat{\lambda}_2, \widehat{\lambda}_3, \widehat{\lambda}_4, \widehat{\lambda}_5, \widehat{\lambda}_6, \widehat{\lambda}_7, \widehat{\lambda}_8\} \text{ with } \underbrace{\mathrm{Tr}(\widehat{\lambda}_i) = 0}_{reduces further in \underbrace{\mathrm{Tr}(\widehat{\lambda}_i \widehat{\lambda}_j) = 2\delta_{ij}}_{for a 0} \\ & \widehat{\lambda}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{\frown}{=} \widehat{\sigma}_1; \ \widehat{\lambda}_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{\frown}{=} \widehat{\sigma}_2; \ \widehat{\lambda}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{\frown}{=} \widehat{\sigma}_3 \implies Isospin \left[\widehat{T}_3 = \frac{1}{2} \widehat{\lambda}_3 \right] \\ & \widehat{\lambda}_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \qquad \widehat{\lambda}_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \\ & \widehat{\lambda}_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; \qquad \widehat{\lambda}_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}; \qquad \widehat{\lambda}_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \implies Hyper Charge \left[\widehat{Y} = \frac{1}{\sqrt{3}} \widehat{\lambda}_8 \right] \end{aligned}$
Isospin and Hypercharge	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Antiquarks

	$+\frac{2}{3} \phi \overline{s}$	$ \begin{aligned} \hat{T}_{3} \overline{u} \rangle &= -\frac{1}{2} \overline{u} \rangle \hat{\overline{V}}_{+} \overline{u} \rangle = - \overline{s} \rangle \\ \hat{T}_{3} \overline{d} \rangle &= +\frac{1}{2} \overline{d} \rangle \hat{\overline{V}}_{-} \overline{s} \rangle = - \overline{u} \rangle \end{aligned} $	The elementary antiquark-triplet can be identified with the antiquark states $ \bar{u}\rangle$, $ \bar{d}\rangle$ and $ \bar{s}\rangle$. They cannot be ex- pressed in the quark basis { $ u\rangle$, $ d\rangle$, $ s\rangle$ }
Idea:	3→ I ₃	$ \begin{aligned} \widehat{T}_3 \overline{s} \rangle &= 0 & \widehat{U}_+ \overline{d} \rangle = - \overline{s} \rangle \\ \widehat{Y} \overline{u} \rangle &= -\frac{1}{3} \overline{u} \rangle & \widehat{U} \overline{s} \rangle = - \overline{d} \rangle \end{aligned} $	The antiquark basis $ \bar{u}\rangle \rightarrow \begin{pmatrix} 1\\0\\0 \end{pmatrix}; \bar{d}\rangle \rightarrow \begin{pmatrix} 0\\1\\0 \end{pmatrix}; \bar{s}\rangle \rightarrow \begin{pmatrix} 0\\0\\1 \end{pmatrix}$
	$\begin{bmatrix} \bullet & -\frac{1}{3} \\ \hline u & -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \bullet \\ \hline d \end{bmatrix}$	$ \hat{Y} \overline{d} \rangle = -\frac{1}{3} \overline{d} \rangle \hat{T}_{+} \overline{u} \rangle = - \overline{d} \rangle $ $ \hat{Y} \overline{s} \rangle = +\frac{2}{3} \overline{s} \rangle \hat{T}_{-} \overline{d} \rangle = - \overline{u} \rangle $	has different Generators $\{\hat{T}_1, \hat{T}_2, \hat{T}_3, \hat{T}_4, \hat{T}_5, \hat{T}_6, \hat{T}_7, \hat{T}_8\}$ with $\hat{T}_i = -\hat{T}_i^*$

The Light Mesons: coupling quark and antiquark to a $q\overline{q}$ octet (and a $q\overline{q}$ singlet)

P Remaining center state is a singlet. We take the ansatz: $|\mathbf{1}\rangle = \alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle \dots (1)$ We know: Any ladder operator acting on $|\mathbf{1}\rangle$ must result in 0. Therefore: $\hat{T}_{+}|\mathbf{1}\rangle = 0 \stackrel{(1)}{\Rightarrow} \hat{T}_{+}(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) = 0 \Rightarrow$ $(\hat{T}_{+}^{(1)} + \hat{T}_{+}^{(2)})(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) = 0 \Rightarrow \hat{T}_{+}^{(1)}(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) + \hat{T}_{+}^{(2)}(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) = 0 \Rightarrow$ $(0 + \beta |u\bar{d}\rangle + 0) + (-\alpha |u\bar{d}\rangle + 0 + 0) = 0 \Rightarrow \beta |u\bar{d}\rangle - \alpha |u\bar{d}\rangle = 0 \Rightarrow \beta |u\bar{d}\rangle = \alpha |u\bar{d}\rangle \Rightarrow \alpha = \beta \dots (2)$ Again: Any ladder operator acting on $|\mathbf{1}\rangle$ must result in 0. Therefore: $\hat{V}_{-}|\mathbf{1}\rangle = 0 \stackrel{(1)}{\Rightarrow} \hat{V}_{-}(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) = 0 \Rightarrow$ $(\hat{V}_{-}^{(1)} + \hat{V}_{-}^{(2)})(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) = 0 \Rightarrow \hat{V}_{-}^{(1)}(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) + \hat{V}_{-}^{(2)}(\alpha |u\bar{u}\rangle + \beta |d\bar{d}\rangle + \gamma |s\bar{s}\rangle) = 0 \Rightarrow$ $(\alpha |s\bar{u}\rangle + 0 + 0) + (0 + 0 - \gamma |s\bar{u}\rangle) = 0 \Rightarrow \alpha |s\bar{u}\rangle - \gamma |s\bar{u}\rangle = 0 \Rightarrow \alpha = \gamma \dots (3) \quad (1) \stackrel{(2)(3)}{\longrightarrow} |\mathbf{1}\rangle = \alpha |u\bar{u}\rangle + \alpha |d\bar{d}\rangle + \alpha |s\bar{s}\rangle \dots (4)$ Normalization: $(\mathbf{1}|\mathbf{1}\rangle = 1 \stackrel{(4)}{\Rightarrow} \alpha^{2} + \alpha^{2} + \alpha^{2} = 3\alpha^{2} = 1 \Rightarrow \alpha = \frac{1}{\sqrt{3}} \stackrel{(4)}{\longrightarrow} |\mathbf{1}\rangle = \phi_{1}(0,0,0) = \frac{1}{\sqrt{3}} (|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)$

L=0 Mesons: Pseudoscalar Mesons

L=0 Mesons: Vector Mesons

Coupling 3 quarks to L=0 qqq Baryons

The Symmetric Decuplet and Mixed Symmetric Octet of Light Baryon States

Mixed Antisymmetric qqq Octet and Totally Antisymmetric qqq Singlet

The Local Gauge Principle

	• T	The free particle Dirac equation $i\gamma^{\mu}\partial_{\mu}\psi = m\psi$ is invariant under a <i>global</i> phase transformation $\psi(x^{\alpha}) \rightarrow \psi'(x^{\alpha}) = e^{i\phi}\psi(x^{\alpha})$
	ų	$\psi(x^{\alpha}) \rightarrow \psi'(x^{\alpha}) = \widehat{U}(x^{\alpha}) \psi(x^{\alpha}) = e^{iq\chi(x^{\alpha})} \psi(x^{\alpha})$
	• T	The free particle Dirac equation is <u>not</u> invariant under this <i>local</i> transformation: $i\gamma^{\mu}\partial_{\mu}(e^{iq\chi(x^{\alpha})}\psi) = me^{iq\chi(x^{\alpha})}\psi \Rightarrow$
	i	$\psi(\theta_{\mu}e^{i\lambda x}, \psi + e^{i\lambda x}, \theta_{\mu}\psi) = me^{i\lambda x}, \psi \Rightarrow \psi(e^{i\lambda x}, \psi + e^{i\lambda x}, \theta_{\mu}\psi) = me^{i\lambda x}, \psi \Rightarrow$ $iy^{\mu}(\theta_{\mu} + ia\theta_{\mu}x(x^{\alpha}))u = mu$ This equation differs from the original equation by the term $-a\theta_{\mu}x(x^{\alpha})$
	• 1	$(y - (y - (y - y)) = m\phi$. This equation differs non-the original equation by the term $(y - y - m\phi)$. This equation differs non-the original equation by the term $(y - \mu)$.
	tr	ransformation, it is necessary to introduce new fields.
QED	• Ir	n case of the Dirac equation we need to introduce the EM field by means of the four-potential $A^{\mu}(x^{\alpha}) = (\phi(x^{\alpha}), \vec{A}(x^{\alpha}))^{T}$
U(1)	• T	he physics of the EM field does not change under the <i>global</i> gauge transformation $A_{\mu}(x^{\mu}) \rightarrow A'_{\mu}(x^{\mu}) = A_{\mu}(x^{\mu}) - \partial_{\mu}\chi$
	• •	where $A_{\mu}(x^{\alpha}) = (\phi(x^{\alpha}), -A(x^{\alpha}))$ and $d_{\mu} = (d_0, V)$.
	• 4	If the provided invariance under the local gauge transformation $A_{\mu}(x') \rightarrow A_{\mu}(x') \rightarrow A_{\mu}(x') = b_{\mu}(x')$
	• •	when we defined invariant physics under the local gauge transformation $\psi(x) \rightarrow \psi(x) = e^{-ixy} - \psi(x)$, we can achieve this to all by re-writing the free particle Dirac equation $iy^{\mu}\partial_{\mu}h = mh$ to $\sum iy^{\mu}(\partial_{\mu} + igA_{\mu}(x^{\mu}))h = mh$
	8	ball by rewriting the nee-particle birac equation $i\gamma^{\mu} \sigma_{\mu} \phi = m\phi$ to $\gamma^{\mu} \left(\frac{\partial_{\mu} + iq A_{\mu} (x_{\mu})}{\partial_{\mu} \min} \right) \phi = m\phi$
	• T	his modified Dirac equation no longer corresponds to a wave equation for a free particle, because there is now an
	ir	nteraction term $-q\gamma^{\mu}A_{\mu}(x^{\alpha})\psi$.
	• T	he corresponding SU(3) symmetry associated with QCD is invariance under the following local gauge transformation:
	ų	$\psi(x^{\alpha}) \rightarrow \psi'(x^{\alpha}) = e^{ig_s \vartheta(x^{\alpha})_a T_a} \psi(x^{\alpha})$ with $a = 1 \dots 8$, \hat{T}_a being the eight generators of the SU(3) symmetry group related to the
	e	ight Gell-Mann-Matrices by $T_a = \frac{1}{2}\lambda_a$, and $\vartheta(x^a)_a$ being eight functions of the space-time coordinate x^a
	• ٧	Vith this local gauge transformation, the free-particle Dirac equation becomes $[i\gamma^{\mu}(\partial_{\mu} + ig_{S}\partial_{\mu}\vartheta(x^{\mu})_{a}T_{a})\psi = m\psi]$
0.00	• T	The required local gauge invariance can be asserted by introducing eight new fields $G_{\mu}(x^{\alpha})_{\alpha}$, representing the gluons
QCD SU(3)	• T	The last term arises because the SU(3) generators do not commute $[\hat{\lambda}_{a_{\mu}}, \hat{\lambda}_{b_{\mu}}] = 2if_{abc}\hat{\lambda}_{c_{\mu}}$
(-)	• T	The presence of the last term gives rise to gluon self-interactions.
	• T	he Dirac equation, including the interactions with the new gauge fields, becomes $i\gamma^{\mu}(\partial_{\mu}+ig_{S}G_{\mu}(x^{lpha})_{a}\hat{T}_{a})\psi=m\psi$
	• F	rom this we see that the form of the <i>aga</i> interaction term is $-q_z \gamma^{\mu} G_z(x^{\alpha})_z T_z = -\frac{1}{2} q_z \gamma^{\mu} G_z(x^{\alpha})_z \hat{A}_z$
		$337 - \mu (3) $
	• T	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$;
	• T f	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero.
Colo	• T f	where are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. and QCD
Cold	• T fa	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. Ind QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as a called and more and blue (a, b, b) and there are active all other structure constants are zero.
Cold • I	• T <i>f</i> or an nstea	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\bar{r}, \bar{g}, \bar{b}$).
Cold • 1 • 7	• T fa or an or an	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{616} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD ad of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\bar{r}, \bar{g}, \bar{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless
Cold • 1 • 7 • 7 • 7	• T fa nstea colors A free A colo	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD ad of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue $(\vec{r}, \vec{g}, \vec{b})$. e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\vec{r}, \vec{g}, \vec{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the aingle generator of the U(1) local gauge symmetry.
Cold • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T fa or an or an olors A free A colo Wher he Q Each o	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{616} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\bar{r}, \bar{g}, \bar{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. quark contains a net color charge of one color (r, g, b); each antiquark has an anti-color ($\bar{r}, \bar{g}, \bar{b}$) assigned to it
Cold • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T fanstea colors A free A colo Wher he Q cach o The o	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD ad of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\overline{r}, \overline{g}, \overline{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\overline{r}, \overline{g}, \overline{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. quark contains a net color charge of one color (r, g, b); each antiquark has an anti-color ($\overline{r}, \overline{g}, \overline{b}$) assigned to it inly other Standard Model particle with a color is the gluon: quarks exchange gluons, and that's how they form bound states.
Cold • 1 • 2 • 4 • 4 • 4 • 4 • 4 • 4 • 1 • 7 • 1 • 7 • 7 • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T fa nstea colors A free A colo Wher he Q Cach (Che o Dnly (These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\bar{r}, \bar{g}, \bar{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. quark contains a net color charge of one color (r, g, b); each antiquark has an anti-color ($\bar{r}, \bar{g}, \bar{b}$) assigned to it nully other Standard Model particle with a color is the gluon: quarks exchange gluons, and that's how they form bound states. particle with a non-zero color charge couple to gluons. For this reason, leptons do not feel the strong force. uarks, which carry the color charge, exist in three orthogonal color states.
Cold • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T f. f. or ar nstea colors A free A colo Wher the Q Cach Che q Julika	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD ad of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\bar{r}, \bar{g}, \bar{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (QCD interaction is net color charge of one color (r, g, b); each antiquark has an anti-color ($\bar{r}, \bar{g}, \bar{b}$) assigned to it only other Standard Model particle with a color is the gluon: quarks exchange gluons, and that's how they form bound states. particle with a non-zero color charge, exist in three orthogonal color states. e the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) rgb color symmetry is exact. Consequently, the strength of the QCD
Cold	• T fa or ar nstea colors A free A colo Wher the Q Cach o The o Dnly I The q Jnlike Mber	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{cab} = -f_{bac} = -f_{acb} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. Ind QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue $(\bar{r}, \bar{g}, \bar{b})$. e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. Quark contains a net color charge of one color (r, g, b) ; each antiquark has an anti-color $(\bar{r}, \bar{g}, \bar{b})$ assigned to it inly other Standard Model particle with a color is the gluon: quarks exchange gluons, and that's how they form bound states. particle with a non-zero color charge couple to gluons. For this reason, leptons do not feel the strong force. quarks, which carry the color charge, exist in three orthogonal color states. e the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) <i>rgb</i> color symmetry is exact. Consequently, the strength of the QCD action is independent of the color charge.
Cold • 1 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 1 • 1 • 1 • 1 • 1 • 1 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4	• T fa nstea colors A free A colo Wher the Q Che o Donly I The q Julike ntera Wher anticco	These are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{acb} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. Ind QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue $(\bar{r}, \bar{g}, \bar{b})$. e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. quark contains a net color charge of one color (r, g, b) ; each antiquark has an anti-color $(\bar{r}, \bar{g}, \bar{b})$ assigned to it inly other Standard Model particle with a color is the gluon: quarks exchange gluons, and that's how they form bound states. particle with a non-zero color charge, exist in three orthogonal color states. e the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) rgb color symmetry is exact. Consequently, the strength of the QCD action is independent of the color charge. reas electromagnetism doesn't change the electric charge of the particles attracting or repelling one another, the colors (or polors) of the quarks (or antiquarks) change every time the strong nuclear force occurs.
Cold - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	• T fa or ar nstea colors A free A colo Wher the Q Cach o The o Donly p The q Julike ntera Wher nntico	The search of the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. Ind QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\bar{r}, \bar{g}, \bar{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. QCD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. QCD interaction is mediated by eight massless gluons. For this reason, leptons do not feel the strong force. uparks, which carry the color charge, exist in three orthogonal color states. e the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) <i>rgb</i> color symmetry is exact. Consequently, the strength of the QCD action is independent of the color charge. reas electromagnetism doesn't change the electric charge of the particles attracting or repelling one another, the colors (or boors) of the quarks (or antiquarks) change every time the strong nuclear force occurs. a color states can be represented by 3 color wave functions $\frac{Y^c}{\sqrt{3}} = \frac{1}{\sqrt{3}} \lambda_8$
Cold	• T f_{a}	The provided and the properties of the properties is $f_{123} = 1; f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}; f_{458} = f_{678} = \frac{\sqrt{3}}{2};$ The provided provided particle with a color charge of the particles attracting or repelling one another, the colors (or provided
Colc	• T f_{d} or an nstea colors A free A colo Wher the Q Cach o Che o Dnly I The q Jnlike Wher rentice The 3 r = (The set of the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = f_{cab} = -f_{bac} = -f_{acb} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue $(\vec{r}, \vec{g}, \vec{b})$. e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\vec{r}, \vec{g}, \vec{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. quark contains a net color charge of one color (r, g, b) ; each antiquark has an anti-color $(\vec{r}, \vec{g}, \vec{b})$ assigned to it inly other Standard Model particle with a color is the gluon: quarks exchange gluons, and that's how they form bound states. the the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) <i>rgb</i> color symmetry is exact. Consequently, the strength of the QCD action is independent of the color charge every time the strong nuclear force occurs. reas electromagnetism doesn't change the electric charge of the particles attracting or repelling one another, the colors (or olors) of the quarks (or antiquarks) change every time the strong nuclear force occurs. record states can be represented by 3 color wave functions $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, g = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
Cold	• T for ar nstea colors A free A colo Wher the Q Che o Dolly p Che o Dolly p The 3 wher anticc The 3 r = $\left(\frac{1}{2} \right)^{-1}$	hese are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $\frac{\partial d}{\partial b} = f_{bca} = f_{cab} = -f_{cb} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD ad of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\bar{r}, \bar{g}, \bar{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless eas the QED interaction is mediated by a massless photon corresponding to the eight generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (QCD interaction is mediated by eight massless gluons. For this reason, leptons do not feel the strong force. particle with a non-zero color charge, exist in three orthogonal color states. e the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) rgb color symmetry is exact. Consequently, the strength of the QCD action is independent of the color charge. et eas electromagnetism doesn't change the electric charge of the particles attracting or repelling one another, the colors (or blors) of the quarks (or antiquarks) change every time the strong nuclear force occurs. et color states can be represented by 3 color wave functions $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, g = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $g = \frac{1}{\sqrt{3}} \lambda_{B}$ $g = \frac{1}{$
Colc • 1 • 2 • 4 • 4 • 7 • 1 • 6 • 1 • 7 • 1 • 1 • 7 • 1 • 7 • 7 • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T f f or ar nstea colors A free A colo Wher the Q Cach of The o Dolly p The q Julika wher natication The 3 The 3 colors The 3 colors	these are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $\frac{\partial \partial c}{\partial c} = f_{bca} = f_{cab} = -f_{bac} = -f_{cba} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. Ind QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$). e particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\vec{r}, \vec{g}, \vec{b}$) added together are colorless eas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (Quark contains a net color charge of one color (r, g, b); each antiquark has an anti-color ($\vec{r}, \vec{g}, \vec{b}$) assigned to it unly other Standard Model particle with a color is the gluon: quarks exchange gluons, and that's how they form bound states. e the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) <i>rgb</i> color symmetry is exact. Consequently, the strength of the QCD attices is independent of the color charge. reas electromagnetism doesn't change the electric charge of the particles attracting or repelling one another, the colors (or olors) of the quarks (or antiquarks) change every time the strong nuclear force occurs. color states can be represented by 3 color wave functions intiquarks can be labelled by two quantum numbers: The third one of color isospin I_5 and the color hypercharge
Cold • 1 • 7 • 7 • 7 • 7 • 7 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T for ar nstea colors A free A colo Wher he Q Che Q Che Q Che Q Julika Wher nticc The 3 r = $\left(\frac{1}{2} \right)$	The series are the structure constants and their properties: $f_{123} = 1; f_{147} = f_{246} = f_{257} = f_{345} = f_{637} = \frac{1}{2}; f_{458} = f_{678} = \frac{\sqrt{3}}{2};$ $f_{abc} = f_{bca} = -f_{bac} = -f_{cba} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$). Expanding and the exposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$). Expandic expansion of subscription of the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$) and three opposite color charges anti-red, anti-green and anti-blue ($\vec{r}, \vec{g}, \vec{b}$) and three opposite color charges of \vec{r} and $\vec{r}, \vec{g}, \vec{b}$) added together are colorless to particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. The upper value of the color charge of one color (r, g, b); each antiquark has an anti-color ($\vec{r}, \vec{g}, \vec{b}$) added together are colorless the approximate SU(3) ubcal gauge symmetry. (CD interaction is mediated by eight massless gluons; corresponding to the single generator of the SU(3) local gauge symmetry. (D interaction the another color charge couple to gluons. For this reason, leptons do not feel the strong force. (D and the color charge the electric charge of the particles attracting or repelling one another
Colc • 1 • 2 • 4 • 4 • 4 • 7 • 1 • 6 • 1 • 7 • 1 • 1 • 1 • 1 • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T for ar nstea colors A free A colo Wher he Q Cach o The o Dnly p The q Jnlike matrice The 3 comp man	The series are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $a_{abc} = f_{bca} = -f_{bac} = -f_{abc} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue $(\vec{r}, \vec{g}, \vec{b})$. Expanding the particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. For plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\vec{r}, \vec{g}, \vec{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the single generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the single generators of the SU(3) local gauge symmetry. (CD interaction is mediated by eight massless gluons. For this reason, leptons do not feel the strong force. I uparks, which carry the color charge, exist in three orthogonal color symmetry is exact. Consequently, the strength of the QCD action is independent of the color charge. ease electromagnetism doesn't change the electric charge of the particles attracting or repelling one another, the colors (or lobors) of the quarks (or antiqu
Colc • 1 • 2 • 4 • 7 • 7 • 1 • 6 • 7 • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T for ar nstea colors A free A colo Wher the Q Che o Dnly p Che q Unlike mantice Che 3 r = $\left(\frac{1}{2} \right)^{-1}$	The series are the structure constants and their properties: $f_{123} = 1$; $f_{147} = f_{246} = f_{257} = f_{345} = f_{637} = \frac{1}{2}$; $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$; $f_{abc} = f_{bca} = -f_{bac} = -f_{abc} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as s, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue $(\bar{r}, \bar{g}, \bar{b})$. the particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. For plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors $\bar{r}, \bar{g}, \bar{b}$) added together are colorless reas the QED interaction is mediated by a massless photon corresponding to the single generators of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (CD interaction is mediated by eight massless pluons. For this reason, leptons do not feel the strong force. uparks, which carry the color charge, exist in three orthogonal color states. the approximate SU(3) <i>uds</i> flavor symmetry, the SU(3) $r_g b$ color symmetry is exact. Consequently, the strength of the QCD action is independent of the color charge. (1) $0, g = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\$
Colc • 1 • 4 • 4 • 4 • 7 • 7 • 6 • 7 • 1 • 1 • 1 • 1 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	• T for ar nstea solors A free A cold Wher the Q Sach o Dolly I The Q Julika Wher the Q Julika Wher the Q The 3 The	The product of the structure constants and their properties: $f_{123} = 1; f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}; f_{458} = f_{678} = \frac{\sqrt{3}}{2};$ take = $f_{bca} = f_{cab} = -f_{bac} = -f_{cba} = -f_{cba}$ (anti-symmetric). All other structure constants are zero. nd QCD and of two types of charge like in electromagnetism, QCD has three fundamental charges for the strong nuclear force, known as is, called red, green and blue (r, g, b) and three opposite color charges anti-red, anti-green and anti-blue (r, g, b). a particle cannot have a net charge of any type; only "colorless" states are allowed for free (observable) particles. or plus its anti-color is colorless; additionally, all three unique colors r, g, b (or anticolors r, g, b) added together are colorless reas the QED interaction is mediated by eight massless gluons corresponding to the eight generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generator of the U(1) local gauge symmetry. (CD interaction is mediated by eight massless gluons corresponding to the eight generators of the SU(3) local gauge symmetry. (Quark contains a net color charge of one color (r, g, b); each antiquark has an anti-color (r, g, b) assigned to it inly other Standard Model particle with a color is the gluon: Quarks exchange gluons, and that's how they form bound states. Particle with a non-zero color charge couple to gluons. For this reason, leptons do not feel the strong force. Usuarks, which carry the color charge is the strong nuclear force occurs. reas electromagnetism doesn't change the electric charge of the particles attracting or repelling one another, the colors (or slors) of the quarks (or antiquarks) change every time the strong nuclear force occurs. reas electromagnetism doesn't change the color states of quarks of the quarks (or antiquarks) change every time the strong nuclear force occurs. a $\int_{0}^{-1} \int_{0}^{-1} \int_{0}^{-1} \int_{0$

Gluons: Coupling color and anticolor to a $c\overline{c}$ octet (and a forbidden $c\overline{c}$ singlet)

- By coupling a color triplet 3 with an anticolor triplet $\overline{3}$, altogether $3\otimes\overline{3} = 9$ color-anticolor states (i.e. gluons) could be theoretically produced. These 9 states split into an octet and a singlet: $3\otimes\overline{3} = 8 \oplus 1$, as is derived below.
- The singlet is forbidden for gluons though, as a single gluon (which is not observable in a free state) is not allowed to be colorless! Therefore, only 8 gluons exist.

• Graphical derivation: The vertices of the color triplet 3 are the center-points for the three coupled anti-triplets $\overline{3}$. This creates a hexagon with six uniquely occupied corners and a triple-occupied center.

In a SU (3) multiplet, each point of the outer shell is occupied once, and each point of the next inner shell (if the outer shell was not a triangle) is occupied twice. The outer shell here is a hexagon; the next inner shell is the center, which should therefore only be occupied twice (instead of three-fold). Therefore, the hexagon with the triple-occupied center can be decomposed into a hexagon with a double-occupied center (an octet) and a singlet (the additionally occupied center point).

The six border states $\xi_8(I^c, I_3^c, Y^c)$ of the octet are unique (quantum number $I^c = (I_3^c)_{max} = 1$):

$$G_8\left(1,-\frac{1}{2},+1\right) = |g\bar{b}\rangle, G_8\left(1,+\frac{1}{2},+1\right) = |r\bar{b}\rangle, G_8(1,+1,0) = |r\bar{g}\rangle, G_8\left(1,+\frac{1}{2},-1\right) = |b\bar{g}\rangle, G_8\left(1,-\frac{1}{2},-1\right) = |b\bar{r}\rangle, G_8\left(1,-\frac{1}{2},0\right) = |g\bar{r}\rangle$$
The first center state $G_8^{C1}(1,0,0)$ can be derived by using ladder operators.

We choose
$$G_8^{C1}(0,0,1) = \hat{T}_-^c |r\bar{g}\rangle = \hat{T}_-^{(1)} |r\bar{g}\rangle + \hat{T}_-^{(2)} |r\bar{g}\rangle \xrightarrow{norm} G_8^{C1}(1,0,0) = \frac{1}{\sqrt{2}} (|r\bar{r}\rangle - |g\bar{g}\rangle) \dots (1)$$

• The second center state $G_8^{C2}(1,0,0)$ can be derived by means of further ladder operators:

$$\hat{V}_{-}^{c}|r\bar{s}\rangle \stackrel{norm}{=} \frac{1}{\sqrt{2}} \left(|b\bar{b}\rangle - |r\bar{r}\rangle \right) \dots (2) \ \hat{U}_{-} \left| g\bar{b} \right\rangle \stackrel{norm}{=} \frac{1}{\sqrt{2}} \left(|b\bar{b}\rangle - |g\bar{g}\rangle \right) \dots (3) \text{ Superposition: } G_{8}^{C2}(0,0,1) = \alpha \frac{|bb\rangle - |r\bar{r}\rangle}{\sqrt{2}} + \beta \frac{|bb\rangle - |g\bar{g}\rangle}{\sqrt{2}} \dots (4)$$

with :
$$\langle C1|C2 \rangle = 0$$
 and $\alpha^2 + \beta^2 = 1 \Longrightarrow \left| G_8^{C2}(1,0,0) = \frac{1}{\sqrt{6}} \left(|r\bar{r}\rangle + |g\bar{g}\rangle - 2|b\bar{b}\rangle \right) \right|$

|--|

Color Confinement

a .						
Color	Colored objects are always contined to colorless singlet states. No object with nonzero color can propagate as free particle.					
confinement	Therefore we never see free quarks. They are always confined to bound colorless states.					
hypothesis	Gluons, being colored, are also confined to colorless objects. Therefore gluons do not propagate over macroscopic distances.					
colorless	Only when $I_3^c = Y^c = 0$ a state is colorless. This is only the case for color singlet states.					
gg interaction triple and quartic gluon vertices	Uritual gluons carry co- lor and interact with each other: Therefore they form flux-tubes Energy stored in the field is proportional to the separation with $1 GeV/fm!$	$fis is 10^5 N$ between any 2 unconfined guarks!				
Hadronic states	The color confinement hypothesis implies that all hadrons (bound quark states) are colorless, i.e. have a colorless, singlet color state. This strongly restricts the possible quark combinations. Not to be confused: (Single) gluon states are <u>not</u> allowed to be (colorless) singlet color states. All free (observable) colored objects must be bound (colorless) singlet color states					
Hadroni- sation	In a process like $e^+e^- \rightarrow q\overline{q}$ two (initially free) quarks are produced traveling back to back. As they separate the color field is restricted to a tube. When the energy stored in the color field is sufficient, the tube breaks into smaller "strings" producing new $q\overline{q}$ pairs. This results in a jet of hadrons (bound quark states).					
allowed <i>q q</i> meson state	The only possible singlet color state for $(q\overline{q})$ mesons is $\xi_c(q\overline{q}) = \frac{1}{\sqrt{3}} (r\overline{r}\rangle + g\overline{g}\rangle + b\overline{b}\rangle)$	$ \begin{array}{c} g \\ \bullet \\$				
forbidden <i>qq</i> meson state	There is no singlet color wavefunction for (qq) combinations, therefore there are no qq meson states	$ \begin{array}{c} g \\ \downarrow \\ b \\ b \\ b \\ b \\ b \\ c \\ c$				
allowed <i>qqq</i> baryon state	The only possible totally antisymmetric singlet color state for qqq mesons is $\xi_c(qqq) = \frac{1}{\sqrt{6}}(rgb\rangle - grb\rangle + gbr\rangle - bgr\rangle - rbg\rangle + brg\rangle)$	$3 \otimes 3 \otimes 3 = (6_S \oplus \overline{3}_A) \otimes 3 = 6_S \otimes 3 \oplus \overline{3}_A \otimes 3 = (10_S \oplus 8_{MS}) \oplus (8_{MA} \oplus 1_A)$				
other baryon states	Another possible and confirmed state is the antibaryon (\overline{qqq}) state. Pentaq 2019 by LHCb in CERN. In principle, also other combinations of ($q\overline{q}$) and (qq	wark states $(qqqq\overline{q})$ were observed in 2015 and (q) could exist.				

Running Coupling Constant in QED

General	The coupling constant of QED at low energies is small ($\alpha \sim 1/137$). Therefore, first order calculations already yield good results, and perturbation theory does work well. However, it must be taken into account that in QED α is not constant, but becomes <u>larger</u> at higher energies ("running coupling constant").	0.008 දිවා 0.007	α(0) = 1.0/137.036 — OED
Ward identity	In a field theory with local gauge invariance, higher-order corrections to four-vector currents as shown in (c), (d) and (d) cancel each other out. Only loop corrections to the photon propagator as shown for first order in (b) must be considered.	Ş	
Photon self-energy	The infinite series of corrections to the photon propagator, known as the photon self-energy terms, are accounted for by replacing the lowest-order photon exchange diagram by the infinite series of loop diagrams expressed in terms of the bare electron charge e_0 . The corrections are absorbed into the charge $e_0 \rightarrow e(q^{\alpha}q_{\alpha})$		
Calulating the running coupling constant $\alpha(q^2)$ with renormali- zation	Each loop introduces a correction factor $\pi(q^2)$ such that the effective propagator P $P = P_0 + P_0 \pi(q^2) P_0 + P_0 \pi(q^2) P_0 \pi(q^2) P_0 + \dots = P_0(P_0 \pi(q^2) + P_0^2 \pi(q^2)^2 + \dots$ One-loop photon self-energy correction: $\Pi(q^2) = \frac{\pi(q^2)}{q^2} \Rightarrow \pi(q^2) = q^2 \Pi(q^2) \dots (2)$ $P = P_0 \frac{1}{1 - P_0 q^2 \Pi(q^2)} \dots (3)$ Propagator with bare charge: $P_0 = \frac{e_0^2}{q^2} \stackrel{(3)}{\Rightarrow} P = P_0 \frac{1}{1 - e_0^2 \Pi(q^2)}$ We want to express the effective propagator P in terms of the running coupling $e(q^2)$ $P \stackrel{\text{def}}{=} \frac{e^2(q^2)}{q^2} \stackrel{(4)}{\Rightarrow} P_0 \frac{1}{1 - e_0^2 \Pi(q^2)} = \frac{e^2(q^2)}{q^2} P_0 = \frac{e_0^2}{q^2} \Rightarrow \frac{e_0^2}{q^2} \frac{1}{1 - e_0^2 \Pi(q^2)} = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{1}{1 - e_0^2 \Pi(q^2)} = \frac{e^2(q^2)}{q^2} P_0 = \frac{e_0^2}{q^2} \Rightarrow \frac{e_0^2}{q^2} \frac{1}{1 - e_0^2 \Pi(q^2)} = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{1}{1 - e_0^2 \Pi(q^2)} = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{1 - e_0^2 \Pi(q^2)} = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2)} = \frac{e^2(q^2)}{q^2} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2)} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2)} = \frac{e^2(q^2)}{1 + e^2(q^2) \Pi(q^2)} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2)} = \frac{e^2(q^2)}{1 + e^2(q^2) \Pi(q^2)} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2) - \Pi(q^2)} = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2)} = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2) - \Pi(q^2)} \Rightarrow e^2(q^2) = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2) - \Pi(q^2)} = \frac{e^2(q^2)}{1 - e^2(q^2) \Pi(q^2) \Pi($	'is giver ') $\Rightarrow P$) \Rightarrow (1)) \Rightarrow (4) q^2): $\frac{e_0^2}{-e_0^2 \Pi(q^2)}$ t^2) = $\frac{1}{1-q}$ (μ^2) $\Pi(\mu^2)$ $(\mu^2) \Pi(\mu^2)$ $\Rightarrow 4\pi \alpha (q^2)$ 93 GeV:	h by: $P = P_0 \frac{1}{1 - P_0 \pi(q^2)} \dots (1)$ $\dots (5)$ $\frac{e_0^2}{e_0^2 \pi(\mu^2)} \Longrightarrow$ $\frac{e^2(\mu^2)}{1 + e^2(\mu^2)(\pi(\mu^2) - \pi(q^2))} \Longrightarrow$ $\frac{e^2(\mu^2)}{1 + e^2(\mu^2)(\pi(\mu^2) - \pi(q^2))} \Longrightarrow$ $\frac{q^2}{1 - \alpha(\mu^2) \frac{1}{3\pi} \ln(\frac{q^2}{\mu^2})} \Longrightarrow$ $\alpha = \frac{1}{127.4}$

Running Coupling Constant in QCD

General	The coupling constant of QCD at low energies is large ($\alpha_s \sim 1$). Therefore, first order calculations are not sufficient, and perturbation theory does not work. However, it must be taken into account that in QCD α_s is not constant, but becomes <u>smaller</u> at higher energies ("running coupling constant") so that perturbation theory can be used in the high-energy regime.	0.5 0.4 0.4 0.4 0.2 0.1 0.2 0.1 1 10 10 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Gluon self energy	Owning to the gluon-gluon self-interaction, there are additional diagrams. $\Pi(q^2) - \Pi(\mu^2) \approx -\frac{B}{4\pi} \ln\left(\frac{q^2}{\mu^2}\right) \text{ with } B = \frac{11N_c - 2N_f}{12\pi} \frac{N_f}{N_c} \dots \text{ #quark flavors} \\ N_c \dots \text{ #fo colors} \\ \text{For } N_c = 3 \text{ and } N_f \leq 6 \text{ quarks}, B > 0 \implies \alpha_s \text{ decreases with increasing } q^2$	
$\alpha_s(q^2)$	$\alpha_s(q^2) = \frac{\alpha_s(\mu^2)}{1+B\alpha_s(\mu^2)\frac{1}{3\pi}\ln\left(\frac{q^2}{\mu^2}\right)} \text{ with } B = \frac{11N_c - 2N_f}{12\pi} \text{ Asymptotic At } q > 100 GeV \text{ and } freedom \text{ particles. Perturbation}$	$r_s{\sim}0.1.$ Quarks can be treated as quasi-free ion theory can be used.

		()					
Parity	$ \hat{P}\Psi(\vec{x},t) = \Psi(-\vec{x},t) \\ \Rightarrow \{ \hat{P}\hat{P} = 1 \text{ If physics is in-} \hat{P}^{\dagger}\hat{P} = 1 \Leftrightarrow \hat{P}^{\dagger} = \hat{P}^{-1} \text{ unitary, } \hat{P} = \hat{P}^{-1} \Rightarrow \hat{P}^{\dagger} = \hat{P} \text{ Hermitian} \\ \hat{P}^{\dagger}\hat{P} = 1 \Leftrightarrow \hat{P}^{\dagger} = 0 \text{ then } \hat{P}^{\dagger} = \hat{P} \text{ Hermitian} \\ \hat{P}^{\dagger}\hat{P} = 1 \Leftrightarrow \hat{P}^{\dagger} = 0 \text{ then } \hat{P}^{\dagger} = 0 \text{ then } \hat{P}^{\dagger} = \hat{P} \text{ Hermitian} \\ \hat{P}^{\dagger}\hat{P} = 1 \Leftrightarrow \hat{P}^{\dagger} = 0 \text{ then } \hat{P}^{\dagger}$						
operator	$\frac{PP\Psi(\vec{x},t) = \Psi(\vec{x},t)}{P(r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r$						
	$\frac{P(e^{-}) = P(v_e) = P(q) = +1}{6} \frac{P(e^{+}) = P(\overline{v}_e) = P(\overline{q}) = -1}{6} \frac{P(\gamma) = P(g) = P(W^{\pm}) = P(Z) = -1}{6} \frac{P(Higgs) = +1}{6}$						
P in QED	$\hat{P} = \gamma^0 \Longrightarrow U \xrightarrow{P} \hat{P} U = \gamma^0 U \text{adjoint spinor} \overline{U} = U^{\dagger} \gamma^0 \xrightarrow{P} (\hat{P} U)^{\dagger} \gamma^0 = (\gamma^0 U)^{\dagger} \gamma^{0=} U^{\dagger} \gamma^{0\dagger} \gamma^0 = U^{\dagger} \gamma^0 \gamma^0 = \overline{U} \gamma^0 \Longrightarrow \overline{U} \xrightarrow{P} \overline{U} \gamma^0$						
QED matrix element	$\int_{q}^{p} \frac{1}{p_{e}} \int_{p_{e}}^{p} \frac{1}{p_{e}} = \overline{U}_{e}(p_{3}^{\sigma}) \gamma^{\mu} U_{e}(p_{1}^{\sigma}) \xrightarrow{\hat{P}} \overline{U}_{e}(p_{3}^{\sigma}) \gamma^{0} \gamma^{\mu} \gamma^{0} U_{e}(p_{1}^{\sigma}) \Rightarrow$ $\int_{q}^{p} \frac{1}{p} \overline{U}_{e}(p_{3}^{\sigma}) \gamma^{0} \gamma^{0} \gamma^{0} U_{e}(p_{1}^{\sigma}) = \overline{U}_{e}(p_{3}^{\sigma}) \gamma^{0} U_{e}(p_{1}^{\sigma}) = j_{e}^{0}$ $\int_{p}^{k} \frac{1}{p} \overline{U}_{e}(p_{3}^{\sigma}) \gamma^{0} \gamma^{k} \gamma^{0} U_{e}(p_{1}^{\sigma}) = -\overline{U}_{e}(p_{3}^{\sigma}) \gamma^{k} \gamma^{0} \gamma^{0} U_{e}(p_{1}^{\sigma}) = -\overline{U}_{e}(p_{3}^{\sigma}) \gamma^{k} U_{e}(p_{1}^{\sigma}) = -j_{e}^{k}$ $\int_{p}^{\mu} \frac{1}{p} \frac{1}{q} = j_{e}^{0} j_{0}^{0} - j_{e}^{k} j_{e}^{k} \xrightarrow{\hat{P}} j_{0}^{0} j_{0}^{0} - (-j_{e}^{k})(-j_{k}^{\sigma}) = j_{e}^{\mu} j_{e}^{\mu} j_{\mu}^{\mu} \Rightarrow \text{ invariant under } \hat{P} \Rightarrow \text{ parity is conserved in QED}$						
QCD	Apart from the color fact	ors, the	QCD ii	nteraction has the same	form \Longrightarrow invariant under $\hat{P} \Longrightarrow$	parity is conser	rved in QCD
P. conserva- tion in decay	The total parity of a two- which is given by $(-1)^l$	-body fir with <i>l</i> be	nal stat eing the	e is the product of the in e orbital angular momer	ntrinsic parities and the parity on tum in the final state.	of the orbital wa	avefunction,
Examples for allowed and forbidden deacys	Consider $\rho^0(1^-) \rightarrow \pi^+ + angular momentum l = Consider \rho^0(0^-) \rightarrow \pi^+ + angular momentum l =$	π^- . In 1. There - π^- . In 0. There	order t fore P order t fore P	o conserve angular mor $(\rho^0) = P(\pi^+) P(\pi^-) (-$ o conserve angular mor $(\rho^0) = P(\pi^+) P(\pi^-) (-$	nentum, the π^+ and π^- are properties $1)^l \Rightarrow -1 = (-1)(-1)(-1)^{-1}$ nentum, the π^+ and π^- are properties $1)^l \Rightarrow -1 = (-1)(-1)(-1)^{-1}$	oduced with rela ✓allowed oduced with rela	ative orbital
		Rank	Parity	Example	Lorentz-invariant bilir	near covariant c	urrents
			,		Form	components	Boson spin
	Scalar	0	+	temperature T	$i_{\rm S} = \overline{\psi}\phi$	1	0
Davity	Pseudoscalar	0	-	helicity <i>h</i>	$i_{PS} = \overline{\psi} \gamma^5 \phi$	1	0
properties	Vector	1	-	momentum $ec{p}$	$j_V^{\mu} = \overline{\psi} \gamma^{\mu} \phi$	4	1
	Axial (pseudo)vector	1	+	angular momentum $ec{L}$	$j^{\mu}_{A} = \overline{\psi} \gamma^{\mu} \gamma^{5} \phi$	4	1
	Tensor 2 $j_T^{\mu\nu} = \overline{\psi}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})\phi$		6	2			
	$ j_{S} \xrightarrow{\hat{\rho}} j_{S} \qquad j_{PS} \xrightarrow{\hat{\rho}} -j_{PS} \qquad j_{V}^{0} \xrightarrow{\hat{\rho}} j_{V}^{0}, j_{V}^{k} \xrightarrow{\hat{\rho}} -j_{V}^{k} \Rightarrow j_{V}^{\mu} j_{\mu}^{\nu} \xrightarrow{\hat{\rho}} j_{V}^{\mu} j_{\mu}^{\nu} \qquad j_{A}^{0} \xrightarrow{\hat{\rho}} -j_{A}^{0}, j_{A}^{k} \xrightarrow{\hat{\rho}} j_{A}^{k} \Rightarrow j_{A}^{\mu} j_{\mu}^{A} \xrightarrow{\hat{\rho}} j_{A}^{\mu} j_{\mu}^{A} \qquad j_{A}^{\mu} j_{\mu}^{\nu} \xrightarrow{\hat{\rho}} -j_{A}^{\mu} j_{\mu}^{\mu} \xrightarrow{\hat{\rho}} -j_{A}^{\mu} j_{\mu} \xrightarrow{\hat{\rho}} -$						
Parity violati- on in β-decay of polarized cobalt-60.	в е-(-р)	<i>P̂</i> Β Β		$e^{-(p)} \qquad \qquad$	$i^* + e^- + \overline{v}_e$ $i^*_{\mu} = \frac{e^- + \overline{v}_e}{1}$ $i^*_{\mu} = \frac{e^- + \overline{v}_e}{1}$	e spin magnetic gned by an stro . It turns out th beta-decay are e on (and hence o f the atoms)	moment μ of ng external at much more emitted opposite pposite to the
	Direct interpretation: The weak interaction "cares" about the spin direction (couples only to LH particles)						
	Parity violation interpretation: In a (hypothetically) experiment mirrored under parity-transformation \hat{P} , the axial vectors \vec{B} and $\vec{\mu}$ do <u>not</u> change orientation. Only the vector momentum \vec{p}_e of the emitted electrons changes sign. Therefore, in the \hat{P} -transformed "mirror-world", the electrons would predominantly be emitted into \vec{B} direction (and hence into the spin direction of the atoms). \Rightarrow The parity-transformed experiment would have a different outcome \Rightarrow parity violation.						
Neutrino scattering	$\begin{array}{c} v_{e} & e^{-} & \mu \\ p_{1} & \mu \\ p_{2} & \nu \\ d & u \end{array}$	$ \begin{array}{l} \mu \in \overline{U}(p_{d}) \\ = \overline{U}(p_{d}) \\ \mu = \overline{U}(p_{d}) \\ \mu \in \overline{U}(p_{d}) \\ \eta \in $	$g_V^{\alpha} (g_V)$ (g_V) $(g_V$	ged-current weak intera $\chi^{\mu} + g_A \gamma^{\mu} \gamma^5) U(p_1^{\alpha}) =$ $\chi^{\nu} + g_A \gamma^{\nu} \gamma^5) U(p_2^{\alpha}) =$ $g_V^2 j_V^{\nu \mu} j_{du\mu}^{\nu} + g_A^2 j_{e\nu}^{A\mu} j_{du\mu}^{A}$ $g_{du\mu}^{\nu} + g_A^2 j_{e\nu}^{A\mu} j_{du\mu}^{A} - g_V g_Z$	$\begin{aligned} & \operatorname{ction} v_e d \to e^- u; \\ & g_v J_{ve}^{V\mu} + g_A J_{ve}^{A\mu} \\ & g_v J_{vu}^{V\mu} + g_A j_{du}^{A\nu} \\ & + g_V g_A (J_{ve}^{V\mu} j_{d\mu\mu}^A + j_{ve}^{A\mu} j_{du\mu}^V) \\ & A (J_{ve}^{V\mu} j_{d\mu\mu}^A + j_{ve}^{A\mu} j_{d\mu\mu}^V) \end{aligned}$	strength of par $\frac{g}{g_V^2}$ max. violation	ity violating part $\frac{vg_A}{+g_A^2}$ when $ g_V = g_A $
	_		cor	iserves parity	violates parity		- IOVI IOAI

Weak Interaction: Feynman Rules and Chiral Structure. Strength of Weak Interaction.

Propagator of massive W boson	$W = i \frac{1}{q^{\alpha}q_{\alpha}-m_{w}^{2}} \sum_{\substack{\nu \in \lambda \in \lambda^{*} \\ polarization \\ states}} \sum_{\substack{n \in \lambda \in \lambda^{*} \\ polarization \\ has also longitud. state}} \frac{\left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\alpha}-m_{w}^{2}}\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\alpha}-m_{w}^{2}}\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\alpha}-m_{w}^{2}}\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\alpha}-m_{w}^{2}}\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\mu}}-\frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\mu}}-\frac{q_{\mu}q_{\mu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\mu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\mu}}-\frac{q_{\mu}q_{\mu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\mu}}{m_{w}^{2}}\right)} = \frac{\left(-\frac{i}{q^{\alpha}q_{\mu}}-\frac{q_{\mu}q_{\mu}}{m_{w}^{2}}\right)}{\left(-g_{\mu\nu} - \frac{q_{\mu}q_{\mu}}{m_{w}^{2}}\right)}$
weak charged vertex factor	$ \int_{W_{1}}^{\mu} \int_{W_{2}}^{\mu} W_{2}^{p_{5}} W_{2} W_{2}^{p_{5}} W_{2} W_{2}^{p_{5}} W_{2}^{p_{5}} W$
Matrix - element \mathcal{M}_{fi}	$\mathcal{M}_{fi} = -\left(\frac{g_w}{\sqrt{2}}\overline{\Psi}_3\frac{1}{2}\gamma^{\mu}(1-\gamma^5)\Psi_1\right)\frac{g_{\mu\nu}-q_{\mu}q_{\nu}/m_w^2}{q^{\alpha}q_{\alpha}-m_w^2}\left(\frac{g_w}{\sqrt{2}}\overline{\Psi}_4\frac{1}{2}\gamma^{\nu}(1-\gamma^5)\Psi_2\right)$
Fermi Theory \mathcal{M}_{fi} limit $q^lpha q_lpha \ll m_w^2$	$ \begin{array}{c} \underset{\rho_{j}}{\underset{\mu}{\underset{\mu}{\underset{\nu}{\underset{\nu}{\underset{\nu}{\underset{\nu}{\underset{\nu}{$
Strength of Weak Inter- action	When $ q^{\alpha}q_{\alpha} \ll m_w$ (low energy), then the propagator $P_W \sim \frac{1}{q^{\alpha}q_{\alpha} - m_w^2}$ becomes $P_W \sim -\frac{1}{m_w^2}$. In comparison, $P_{QWD} \sim \frac{1}{q^{\alpha}q_{\alpha}}$. Therefore, weak ineraction decay rates, which are proprtional to $ \mathcal{M} ^2$, are suppressed by $\frac{(q^{\alpha}q_{\alpha})^2}{m_W^4}$ realative to QED rates. In the high energ limit, when $ q^{\alpha}q_{\alpha} \gg m_w$, QED and weak interactions have almost the same strength.

Decay Modes, Branching Ratio

General	Particles can have more than one possible final state or decay mode. Example: The K_s meson decays 99.9% of the time in one of two ways: $K_s \to \pi^+\pi^-$ and $K_s \to \pi^0\pi^0$.
Fermi's trans.	Each decay mode has its own matrix element, \mathcal{M} . Fermi's Golden Rule gives us the transition rate Γ for each decay mode:
rate and $ {\cal M} $	$\Gamma(K_s \to \pi^+\pi^-) \propto \mathcal{M}(K_s \to \pi^+\pi^-) ^2$ and $\Gamma(K_s \to \pi^0\pi^0) \propto \mathcal{M}(K_s \to \pi^0\pi^0) ^2$
Tot. trans. rate	The total transition rate is equal to the sum of all allowed transition rates: $\Gamma(K_s) = \Gamma(K_s \rightarrow \pi^+\pi^-) + \Gamma(K_s \rightarrow \pi^0\pi^0)$
Branching	The branching ratio, BR, is the fraction of time a particle decays to a particular final state
ratio	BR $(K_s \rightarrow \pi^+ \pi^-) = \frac{\Gamma(K_s \rightarrow \pi^+ \pi^-)}{\Gamma(K_s)}$

Chiral Structure of Weak Interaction

Chiral	The four-vector current is given by $j^{\mu} = \frac{g_w}{\sqrt{2}}\overline{U}(p^{\alpha'})\gamma^{\mu}\frac{1}{2}(1-\gamma^5)\overline{U}(p^{\alpha}) = \frac{g_w}{\sqrt{2}}\overline{U}(p^{\alpha'})\gamma^{\mu}\hat{P}_L\overline{U}(p^{\alpha})$						
structure	Only left-handed chiral particle states and right-handed chiral antiparticle states participate in the charged current weak interaction.						
Limit $E \gg m$	$ \begin{array}{c} \begin{array}{c} \bullet \\ & \bullet \\ & & \\ &$						
helicity ≈ chirality	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Chirality	In the realm of non-relativistic energies, the helicity must can be decomposed into RH and LH chiral components: $U_{\uparrow} = \frac{1}{2} \left(1 + \frac{p}{E+m} \right) U_R + \frac{1}{2} \left(1 - \frac{p}{E+m} \right) U_L$						
Helicity in pion decay	Charged pions π^{\pm} are $J^{P} = 0^{-}$ meson states formed from $u\overline{d}$ and $d\overline{u}$. They are the lightest mesons with $m_{\pi} \approx 140 MeV$ and therefore cannot decay via the strong interaction; they can only decay through the weak interaction to states with lighter fundamental fermions. Hence π^{\pm} pions can only decay to states with either electrons or muons. Main decay modes for π^{-} : (1) $\pi^{-} \rightarrow e^{-}\overline{\nu}_{e}$, (2) $\pi^{-} \rightarrow \mu^{-}\overline{\nu}_{\mu}$ (dominant) and (3) $\pi^{-} \rightarrow \mu^{-}\overline{\nu}_{\mu}\gamma$ The general expression for the decay rate $a \rightarrow 1 + 2$ is $\Gamma_{fi} = \frac{p^{*}}{32\pi^{2}m_{a}^{2}} \int \mathcal{M}_{fi} ^{2} d\Omega$ with $p^{*} = \frac{1}{2m_{a}} \sqrt{(m_{a}^{2} - (m_{1} + m_{2})^{2})(m_{a}^{2} - (m_{1} - m_{2})^{2})}$. Hence, we would expect the decay rate $\pi^{-} \rightarrow e^{-}\overline{\nu}_{e}$ to be greater than $\pi^{-} \rightarrow \mu^{-}\overline{\nu}_{\mu}$. The opposite is found to be true, charged pions decay almost entirely to $\pi^{-} \rightarrow \mu^{-}\overline{\nu}_{\mu}$ (or $\pi^{+} \rightarrow \mu^{+}\overline{\nu}_{\mu}$).						
	$ \begin{array}{c} \begin{array}{c} & \text{RH antiparticle} \\ \hline v_{\ell} & \begin{array}{c} & \text{RH particle} \\ \hline p_{\nu} & \begin{array}{c} & \text{RH particle} \\ \hline p_{\ell} & \end{array} \\ \hline p_{\ell} & \begin{array}{c} & \text{RH particle} \\ \hline p_{\ell} & \end{array} \\ \hline p_{\ell} & \begin{array}{c} & \text{RH particle} \\ \hline p_{\ell} & \end{array} \\ \hline p_{\ell} & \end{array} \\ \hline p_{\ell} & \begin{array}{c} & \text{RH particle} \\ \hline p_{\ell} & \end{array} \\ $						
	The matrix element is proportional to the size of the LH chiral component: $\mathcal{M}_{l\pi} \sim \frac{1}{2} \left(1 - \frac{p_l}{E_l + m_l} \right) \dots (1)$						
Qualitative explanation	$ \begin{pmatrix} E_{\pi} \\ \vec{p}_{\pi} \end{pmatrix} = \begin{pmatrix} E_{\nu} \\ \vec{p}_{\nu} \end{pmatrix} + \begin{pmatrix} E_{l} \\ \vec{p}_{l} \end{pmatrix} \begin{vmatrix} \text{in the } \pi^{-} \text{ frame:} \\ \vec{p}_{\pi} = 0, E_{\pi} = m_{\pi} \end{cases} \Longrightarrow \begin{pmatrix} m_{\pi} \\ 0 \end{pmatrix} = \begin{pmatrix} E_{\nu} \\ \vec{p}_{\nu} \end{pmatrix} + \begin{pmatrix} E_{l} \\ \vec{p}_{l} \end{pmatrix} \begin{vmatrix} E_{\nu} \\ \vec{p}_{\nu} \end{vmatrix} \stackrel{\text{def}}{=} p_{\nu} \Longrightarrow \stackrel{m_{\pi} = p_{\nu} + E_{l} \dots (2)}{0 = \vec{p}_{\nu} + \vec{p}_{l} \dots (3)} $						
	$(3) \Rightarrow \vec{p}_{\nu} = -\vec{p}_l \Rightarrow \vec{p}_{\nu} = \vec{p}_l \Rightarrow p_{\nu} = p_l \stackrel{(2)}{\Rightarrow} m_{\pi} = p_l + E_l \Rightarrow E_l = m_{\pi} - p_l \dots (4)$						
	$E_{l}^{2} = m_{\pi}^{2} + p_{l}^{2} - 2m_{\pi}p_{l} E_{l}^{2} = m_{l}^{2} + p_{l}^{2} \Longrightarrow m_{l}^{2} + p_{l}^{*} = m_{\pi}^{2} + p_{l}^{*} - 2m_{\pi}p_{l} \Longrightarrow 2m_{\pi}p_{l} = m_{\pi}^{2} - m_{l}^{2} \Longrightarrow p_{l} = \frac{m_{\pi}^{2} - m_{l}^{2}}{2m_{\pi}} \dots (5) \Longrightarrow$						
	$E_{l} = m_{\pi} - \frac{m_{\pi}^{2} - m_{l}^{2}}{2m_{\pi}} = \frac{2m_{\pi}^{2} - m_{\pi}^{2} + m_{l}^{2}}{2m_{\pi}} \Longrightarrow E_{l} = \frac{m_{\pi}^{2} + m_{l}^{2}}{2m_{\pi}} \dots (6) (1) \Longrightarrow \mathcal{M}_{l\pi} \sim \frac{1}{2} \left(1 - \frac{p_{l}}{E_{l} + m_{l}} \right) \stackrel{(5),(6)}{\Longrightarrow} \mathcal{M}_{l\pi} \sim \frac{1}{2} \left(1 - \frac{m_{\pi}^{2} - m_{l}^{2}}{2m_{\pi}} \frac{1}{\frac{m_{\pi}^{2} + m_{l}^{2}}{2m_{\pi}} + m_{l}} \right) \Longrightarrow$						
	$\mathcal{M}_{l\pi} \sim \frac{1}{2} \left(1 - \frac{m_{\pi}^2 - m_l^2}{2m_{\pi}} \frac{2m_{\pi}}{m_{\pi}^2 + m_l^2 + 2m_{\pi}m_l} \right) = \frac{1}{2} \left(1 - \frac{(m_{\pi} - m_l)(m_{\pi} + m_l)}{(m_{\pi} + m_l)^2} \right) = \frac{1}{2} \left(1 - \frac{m_{\pi} - m_l}{m_{\pi} + m_l} \right) = \frac{1}{2} \left(\frac{m_{\pi} + m_l - m_{\pi} + m_l}{m_{\pi} + m_l} \right) = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} = \frac{1}{2} \frac{2m_l}{m_{\pi} + m_l} \Longrightarrow \boxed{\mathcal{M}_{l\pi} \sim \frac{m_l}{m_{\pi} + m_l}} $						
Probability	Probability for emission under wrong helicity (RH particle or LH antiparticle): $p_{RH}^{\text{particle}} = p_{LH}^{\text{antiparticle}} = \frac{1}{2}(1-\beta)$						

Neutrino Oscillation, Mass and Weak Neutrino Eigenstates, PMNS Matrix

General: weak and mass eigen- states	Neutrinos created in weak interactions ($\mathbf{v}_e, \mathbf{v}_{\mu}, \mathbf{v}_{\tau}$) are called " weak eigenstates " or " flavor eigenstates ". They are a superposition of more fundamental " mass eigenstates " $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ which represent three fundamental neutrinos with small and slightly (unknown) different masses. Weak-force couplings compel the simultaneously emitted neutrino to be in a "charged-lepton-centric" superposition such as, for example, \mathbf{v}_e , which is an eigenstate for a flavor that is fixed by the electron's mass eigenstate, and not in one of the $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ neutrino's own mass eigenstates.				
	Neutrino oscillation arises from mixing between the flavor eigenstates v_e , v_μ , v_τ and mass eigenstates v_1 , v_2 , v_3 . That is, the flavor eigenstates v_e , v_μ , v_τ that interact with the charged leptons in weak interactions are each a different superposition of the three (propagating) mass eigenstates v_1 , v_2 , v_3 of definite mass. Neutrinos are emitted and absorbed in weak processes in flavor eigenstates v_e , v_μ , v_τ , but travel as mass eigenstates v_1 , v_2 , v_3 .				
Neutrino oscillation	As a neutrino superposition propagates through space, the quantum mechanical phases of the three neutrino mass eigenstates v_1, v_2, v_3 advance at slightly different rates, due to the slight differences in their respective masses. This results in a changing superposition mixture of mass eigenstates v_e, v_μ, v_τ as the neutrino travels; but a different mixture of mass eigenstates v_1, v_2, v_3 corresponds to a different mixture of flavor states v_e, v_μ, v_τ . So a neutrino born as, say, an electron neutrino v_e will be some mixture of v_e, v_μ, v_τ after traveling some distance. Since the quantum mechanical phase advances in a periodic fashion, after some distance the state will nearly return to the original mixture, and the neutrino will be again				
	mostly electron neutrino v_e . The electron flavor content of the neutrino will then continue to oscillate – as long as the quantum mechanical state maintains coherence. Since mass differences between neutrino flavors are small in comparison with long coherence lengths for neutrino oscillations, this microscopic quantum effect becomes observable over macroscopic distances.				
	The main feature can be understood by considering just two flavors. We consider the flavor ("weak") eigenstates v_e, v_μ , which here are taken to be coherent superpositions of the mass eigenstates v_1, v_2 . The mass eigenstates propagate as follows: u = u = u = u = u = u = u = u = u = u =				
Oscillation of	In this simplified two-flavor example the flavor eigenstates v_e, v_μ are related to the mass eigenstates v_1, v_2 by a 2x2 unitary matrix that can be expressed in terms of a single mixing angle ϑ : $\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} \\ U_{\mu1} & U_{\mu2} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \dots (1)$				
two flavors (simplified example)	The wavefunction of the neutrino at time $t = 0$: $ \Psi(0)\rangle = v_e\rangle = \cos(\vartheta) v_1\rangle + \sin(\vartheta) v_2\rangle (2)$ The state subsequently evolves according to the tie dependence of the mass eigenstates: $ \Psi(\vec{x},t)\rangle = \cos(\vartheta) v_1\rangle e^{-ip_1^{\mu}x_{\mu}^{1}} + \sin(\vartheta) v_2\rangle e^{-ip_2^{\mu}x_{\mu}^{2}} = \cos(\vartheta) v_1\rangle e^{-i\phi_1} + \sin(\vartheta) v_2\rangle e^{-i\phi_2} (3)$ with $\phi_i = E_i t - \vec{p}_i \cdot \vec{x}$ $\sum_{i=1}^{n} \exp(i\varphi_i) \exp$				
	By inverting (1) we get:				
	$\begin{aligned} \Psi(\vec{x},t)\rangle &= e^{-i\phi_1} \left(\left(\cos^2(\vartheta) + e^{i(\phi_1 - \phi_2)} \sin^2(\vartheta) \right) v_e\rangle - \left(1 - e^{i(\phi_1 - \phi_2)} \cos(\vartheta) \sin(\vartheta) v_\mu\rangle \right) \\ \Psi(\vec{x},t)\rangle &= e^{-i\phi_1} \left(\left(\cos^2(\vartheta) + e^{i\Delta\varphi} \sin^2(\vartheta) \right) v_e\rangle - \left(1 - e^{i\Delta\varphi} \cos(\vartheta) \sin(\vartheta) v_\mu\rangle \right) \\ \end{aligned}$				
Oscillation of three flavors: PMNS matrix	$u = \underbrace{\begin{array}{c} 1 & (v_1, v_1)^{\vee} & c \end{array}}_{\sqrt{2}} \underbrace{\begin{array}{c} (v_2 & v_2)^{\vee} & c \end{array}}_{\sqrt{2}} \underbrace{\begin{array}{c} v_1 & v_2 \\ v_3 \\ v_2 \\ v_4 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_3 \\ v_1 \\ v_2 \\ v_2 \\ v_3 \\ v_1 \\ v_2 \\ v_3 \\ v_3 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_1 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_1 \\ v_2 \\ v_3 \\ v_1 \\ v_1 \\ v_2 \\ v_1 \\ v_1 \\ v_2 \\ v_1 \\ v_2 \\ v_1 \\ v_2 \\ v_1 \\ v_1 \\ v_1 \\ v_2 \\ v_1 \\ v_1 \\ v_1 \\ v_2 \\ v_1 \\ v_1 \\ v_2 \\ v_1 \\ v_1 \\ v_1 \\ v_2 \\ v_1 \\ v_1 \\ v_2 \\ $				
	$ \begin{array}{c} \dots \text{ unitary} \\ U^{-1} = U^{\dagger} = (U^{*})^{T} \Rightarrow \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{pmatrix} U_{e1}^{*} & U_{e1}^{*} & U_{e1}^{*} \\ U_{e2}^{*} & U_{e2}^{*} & U_{e2}^{*} \\ U_{e3}^{*} & U_{\mu3}^{*} & U_{\tau3}^{*} \end{pmatrix} \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} \qquad $				
repr. with 3 Euler angles and phase	$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_{23}) & \sin(\theta_{23}) \\ 0 & -\sin(\theta_{23}) & \cos(\theta_{23}) \end{pmatrix} \begin{pmatrix} \cos(\theta_{13}) & 0 & \sin(\theta_{13}) e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin(\theta_{13}) e^{-i\delta} & 0 & \cos(\theta_{13}) \end{pmatrix} \begin{pmatrix} \cos(\theta_{12}) & \sin(\theta_{12}) & 0 \\ -\sin(\theta_{12}) & \cos(\theta_{12}) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{12} = 35^{\circ} \\ \theta_{23} = 45^{\circ} \\ \theta_{13} = 10^{\circ} \end{pmatrix}$				

Weak Interaction of Quarks, Quark Mixing, Cabibbo Angle and CKM Matrix

The Neutral Kaon System

General:	The weak interaction provides a mechanism whereby the neutral kaons $K^0(d\bar{s})$ and $\bar{K}^0(s\bar{d})$ can mix (see 2 of the 9 possible diagrams on the right side) V_{ud} V_{ud} V_{ud} V_{ud} V_{ud} V_{ud} V_{ud} \bar{d} \bar{K}^0 K
K-short \mathbf{K}_{S} and K-long \mathbf{K}_{L}	Beause of the $K^0 \leftrightarrow \overline{K}^0$ mixing, a neutral kaon produced as a K^0 will develop a \overline{K}^0 component (K^0 and \overline{K}^0 are flavour eigenstates). The K^0/\overline{K}^0 system has to be considered as whole. Neutral kaons propagate as linear combinations of the K^0 and \overline{K}^0 . These physical states are known as the "K-short" K_S and the "K-long" K_L kaon.
Spin-parity and Ĉ <i>Ŷ</i>	$\begin{aligned} K^{0} \text{ and } \overline{K}^{0} \text{ have spin-parity } J^{P} &= 0^{-} \Longrightarrow \widehat{P} \mathcal{K}^{0} \rangle = - \mathcal{K}^{0} \rangle \widehat{P} \overline{\mathcal{K}}^{0} \rangle = - \overline{\mathcal{K}}^{0} \rangle \end{aligned} \\ \mathbf{by convection: } \widehat{\mathcal{L}} \mathcal{K}^{0} \rangle = - \overline{\mathcal{K}}^{0} \rangle \widehat{\mathcal{L}} \overline{\mathcal{K}}^{0} \rangle = - \mathcal{K}^{0} \rangle \end{aligned}$
$ K_S\rangle, K_L\rangle$	$\begin{aligned} K_1^0\rangle &= \frac{1}{\sqrt{2}}(K^0\rangle + \overline{K}^0\rangle) \text{ is a } \hat{C}\hat{P} \text{ eigenstate with } \hat{C}\hat{P} K_1^0\rangle &= \frac{1}{\sqrt{2}}\hat{C}\hat{P}(\overline{K}^0\rangle + K^0\rangle) = K_1^0\rangle \Longrightarrow \underbrace{\operatorname{CP}(K_1^0\rangle) = +1}_{\dots} \dots (1a) \\ K_2^0\rangle &= \frac{1}{\sqrt{2}}(K^0\rangle - \overline{K}^0\rangle) \text{ is a } \hat{C}\hat{P} \text{ eigenstate with } \hat{C}\hat{P} K_2^0\rangle &= \frac{1}{\sqrt{2}}\hat{C}\hat{P}(\overline{K}^0\rangle - K^0\rangle) = - K_2^0\rangle \Longrightarrow \underbrace{\operatorname{CP}(K_2^0\rangle) = -1}_{\dots} \dots (1b) \\ \text{If } \hat{C}\hat{P} \text{ were conserved in the weak interaction, these states would be the } K_S\rangle \text{ and } K_L\rangle \text{ states. But } \hat{C}\hat{P} \text{ violation is small,} \\ \text{hence, in good approximation} \boxed{ K_S\rangle \approx K_1^0\rangle = \frac{1}{\sqrt{2}}(K^0\rangle + \overline{K}^0\rangle), \ K_L\rangle \approx K_2^0\rangle = \frac{1}{\sqrt{2}}(K^0\rangle - \overline{K}^0\rangle)} \boxed{\tau_S = 900ps, \tau_L = 500ns} \end{aligned}$
Kaon decay to pions	$\frac{\Gamma(K_S \to \pi\pi) \gg \Gamma(K_S \to \pi\pi\pi) \text{ and } \Gamma(K_L \to \pi\pi\pi) \gg \Gamma(K_L \to \pi\pi\pi)}{[K_S \text{ decay mostly to } \pi\pi, \text{ and } K_L \text{ decay mostly to } \pi\pi\pi]} $ Explanation: Because kaons and pions have $J^P = 0^- \Rightarrow P(\pi^0\pi^0) = (-1)^l P(\pi^0) P(\pi^0) = (-1)^0 (-1)(-1) = +1 \dots (2a)$ $\hat{C}[\pi^0] = \frac{1}{\sqrt{2}} \hat{C}(u\bar{u} - d\bar{d}) = \frac{1}{\sqrt{2}} \hat{C}(\bar{u}u - \bar{d}d) = + \pi^0\rangle \Rightarrow C(\pi^0\pi^0) = C(\pi^0) C(\pi^0) = (+1)(+1) = +1 \dots (2b)$ $CP(\pi^0\pi^0) = C(\pi^0\pi^0) P(\pi^0\pi^0) \stackrel{(2ab)}{=} (+1)(+1) \Rightarrow \overline{CP(\pi^0\pi^0) = +1} \dots (3)$
	$P(\pi^{+}\pi^{-}) = (-1)^{l} P(\pi^{-}) P(\pi^{-}) = (-1)^{0} (-1) (-1) = +1 \dots (4a)$ $\hat{C} \text{ and } \hat{P} \text{ have the same effect on } \pi^{+}\pi^{-} \text{ (see image): } C(\pi^{+}\pi^{-}) = P(\pi^{+}\pi^{-}) \stackrel{(4a)}{=} +1 \dots (4b)$ $CP(\pi^{+}\pi^{-}) = C(\pi^{+}\pi^{-}) P(\pi^{+}\pi^{-}) \stackrel{(4ab)}{=} (+1)(+1) \Longrightarrow CP(\pi^{+}\pi^{-}) = +1 \dots (5)$
	With some more involved derivations: $[CP(\pi^0\pi^0\pi^0) = -1] \dots (6) [CP(\pi^+\pi^-\pi^0) = -1] \dots (7)$ If \widehat{CP} were conserved in the weak interaction, the hadronic decay of the \widehat{CP} eigenstates $ K_1^0\rangle$ and $ K_2^0\rangle$ would be exclusively $K_1^0 \to \pi\pi$ and $K_2^0 \to \pi\pi\pi$, because $CP(K_1^0\rangle) = +1$ and $CP(\pi\pi) = +1$, and $CP(K_2^0\rangle) = -1$ and $CP(\pi\pi\pi) = -1$.
CP violation in hadronic kaon decays	If a neutral kaon is produced in the strong interaction $p\bar{p} \to K^-\pi^+K^0$, at the tim eof production, the kaon is in the flavor eigenstate: $ K(0)\rangle = K^0\rangle$. Without $\hat{C}\hat{P}$ violation where $ K_S\rangle = K_1^0\rangle$ and $ K_L\rangle = K_2^0\rangle$ the flavor state can be written n terms of the $\hat{C}\hat{P}$ eigenstates: $ K(0)\rangle = K^0\rangle = \frac{1}{\sqrt{2}}(K_1^0\rangle + K_2^0\rangle) = \frac{1}{\sqrt{2}}(K_S\rangle + K_L\rangle)$ Proof: $ K^0\rangle = \frac{1}{\sqrt{2}}(K_1^0\rangle + K_2^0\rangle) = \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}(K^0\rangle + \bar{K}^0\rangle) + \frac{1}{\sqrt{2}}(K^0\rangle - \bar{K}^0\rangle)) = \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}} K^0\rangle + \frac{1}{\sqrt{2}} \bar{K}^0\rangle - \frac{1}{\sqrt{2}} \bar{K}^0\rangle)$ $ K^0\rangle = \frac{1}{2} K^0\rangle + \frac{1}{2} K^0\rangle$ The subsequent time evolution is described in terms of the K_S and K_L , which are the observed kaons in the rest fram of the kaon: $ K_S(t)\rangle = K_S(t)\rangle e^{-im_S t} e^{-t/\tau_S}$ and $ K_L(t)\rangle = K_L(t)\rangle e^{-im_L t} e^{-t/\tau_L} \Longrightarrow$ If a kaon beam, which originally consisted of K^0 propagates over a large distance $L \gg c\tau_S$, the K_S component will decay away,
Origins of CP violation	two pions would never be detected. But, even at a large distance, some $K_L \to \pi\pi$ decays are observed \Rightarrow CP violation! (1) \hat{CP} violation in $K^0 \leftrightarrow \overline{K}^0$ mixing (main contribution): $ K_S\rangle = \frac{1}{\sqrt{1+ \varepsilon ^2}} (\underbrace{ K_1^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_1^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} (\underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}} + \varepsilon \underbrace{ K_2^0}_{\frac{1}{\sqrt{1+ \varepsilon ^2}}})$ (2) Direct \hat{CP} violation in the decay of a \hat{CP} eigenstate: $ K_L\rangle = K_2^0\rangle$ (negligible)

Z Resonance

General:	Because the Z boson couples to all flavors of fermions, the photon in any QED process can be replaced by a Z boson. The respective coupling terms in the matrix elements are $\mathcal{M}_{\gamma} \propto \frac{e^2}{q^{\mu}q_{\mu}}$ and $\mathcal{M}_Z \propto \frac{g_Z^2}{q^{\mu}q_{\mu}-m_z^2}$	$\begin{array}{c} e^{-} & p_{1} & p_{3} & \mu^{-} & e^{-} & p_{1} & p_{3} & \mu^{-} \\ e^{-} & p_{2} & p_{4} & p_{4} & p_{2} & p_{4} & \mu^{+} \\ e^{+} & e^{+} & e^{+} & \mu^{+} \end{array}$
Z resonance	 for low center-of-mass energy √q^μq_μ = √s ≪ m_z QED process dominates for high center-of-mass energy √q^μq_μ = √s ≫ m_z QED and Z exchange processes are both important because coupling strength of γ and Z are comparable in the region √q^μq_μ = √s ≈ m_z Z boson process dominates (Z resonance) 	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Avoiding divergence at $q^{\mu}q_{\mu}=m_{z}^{2}$	Wavefunction of unstable Z boson with total decay rate $\Gamma =$ the free particle form $\Psi \propto e^{-im_Z t}$ by substituting $m_Z \rightarrow m_Z - m_Z^2 \rightarrow \left(m_Z - i\frac{\Gamma_Z}{2}\right)^2 = m_Z^2 - im_Z\Gamma_Z - \frac{1}{4}\Gamma_Z^2 \approx m_Z^2 - im_Z\Gamma_Z =$	$\frac{1}{\tau} \Psi \propto e^{-im_Z t} e^{-\frac{\Gamma}{2}t} \text{ so that } \Psi^* \Psi \propto e^{-\Gamma t} \text{ This can be introduced to}$ $- i \frac{\Gamma_Z}{2}. \text{ Making the same replacement in the Z-boson propagator:}$ $\Rightarrow \frac{g_Z^2}{q^{\mu}q_{\mu}-m_Z^2} \rightarrow \frac{g_Z^2}{q^{\mu}q_{\mu}-m_Z^2+im_Z\Gamma_Z}$

The Weak interaction $SU(2)_L$ Group

	The charged-current weak interaction is associated with invariance under SU(2) local phase transformations:
SU(2) phase transformation	$\varphi(x) \rightarrow \varphi'(x) = e^{ig_w \vec{\alpha}(x)\cdot\vec{T}} \varphi(x) \dots (1)$ with \vec{T} containing the three generators of SU(2): $\vec{T} = \frac{1}{2} (\sigma_1, \sigma_2, \sigma_3)^T$
Gauge fields	The required local gauge invariance can only be satisfied by the introduction of three gauge fields W_{μ}^{k} with $k = 1,2,3$ corresponding to three gauge bosons $W^{(1)}, W^{(2)}, W^{(3)}$
weak isospin doublets	Because the generators of the SU(2) are the Pauli matrices, $\varphi(x)$ must be written in terms of two components and is termed "weak isospin doublet". Since the W^{\pm} couples together fermions differing by one unit charge, the weak isospin doublet must contain flavors differing by one unit of electric charge. Since the weak charged interaction only couples to LH particles and RH antiparticles, these doublets only contain LH particles and RH antiparticle chiral states. RH particle and LH antiparticle chiral states are placed in weak isospin singlets. The weak isospin doublets are constructed from the weak eigenstates and therefore account for the mixing in the CKM and PMNS matrices. The upper member of the doublet is always the particle with differs by plus one unit electric charge relative to the lower member and are weak isospin $I_w = \frac{1}{2}$ states.
	e.g. $\varphi(x) = \begin{pmatrix} v_e(x) \\ e^-(x) \end{pmatrix}_L \text{ for weak isospin} f_w^{(3)} v_e = +\frac{1}{2} v_e \text{ and } f_w^{(3)} e^- = -\frac{1}{2} e^- \text{ all do-} \begin{bmatrix} v_e \\ e^- \\ ublets \end{bmatrix}_L \begin{pmatrix} v_\mu \\ \mu^- \\ \mu^- \end{bmatrix}_L , \begin{pmatrix} v_\mu \\ \tau^- \\ ublets \end{bmatrix}_L , \begin{pmatrix} v_\mu \\ \tau^- \\ ublets \end{bmatrix}_L $
weak isospin singlets	$e_R^-, \mu_R^-, \tau_R^-, u_R, c_R, t_R, d_R, s_R, b_R$ with weak Isospin $I_w = 0$ and third component of weak isospin $I_w^{(3)} = 0$
Interact. term	$ig_{w}\widehat{T}_{k}\gamma^{\mu}W_{\mu}^{k}\varphi_{L} = ig_{w}\frac{1}{2}\widehat{\sigma}_{k}\gamma^{\mu}W_{\mu}^{k}\varphi_{L} \text{weak currents e.g. for } \varphi_{L} = \binom{v_{L}}{e_{L}}\Longrightarrow j_{1}^{\mu} = \frac{g_{w}}{2}\overline{\varphi}_{L}\gamma^{\mu}\widehat{\sigma}_{1}\varphi_{L} j_{2}^{\mu} = \frac{g_{w}}{2}\overline{\varphi}_{L}\gamma^{\mu}\widehat{\sigma}_{2}\varphi_{L} j_{3}^{\mu} = \frac{g_{w}}{2}\overline{\varphi}_{L}\gamma^{\mu}\widehat{\sigma}_{3}\varphi_{L}$
W^\pm currents W^\pm bosons	The weak charged currents are related to the ladder operators $\hat{\sigma}_{\pm} = \frac{1}{2}(\hat{\sigma}_{1} \pm i\hat{\sigma}_{2})$ The W^{\pm} currents are: $j_{\pm}^{\mu} = \frac{1}{\sqrt{2}}(j_{1}^{\mu} \pm ij_{2}^{\mu})$ The physical W^{\pm} bosons are: $W_{\mu}^{\pm} = \frac{1}{\sqrt{2}}(W_{\mu}^{(1)} \pm iW_{\mu}^{(2)})$ All weak currents: $\vec{j}^{\mu} \cdot \vec{W}_{\mu} = j_{1}^{\mu}W_{\mu}^{(1)} + j_{2}^{\mu}W_{\mu}^{(2)} + j_{3}^{\mu}W_{\mu}^{(3)} \equiv j_{+}^{\mu}W_{\mu}^{+} + j_{-}^{\mu}W_{\mu}^{-} + j_{3}^{\mu}W_{\mu}^{(3)}$ W^{+} exchange: $j_{+}^{\mu} = \frac{g_{w}}{\sqrt{2}}\overline{\varphi}_{L}\gamma^{\mu}\hat{\sigma}_{+}\varphi_{L} = \frac{g_{w}}{\sqrt{2}}\overline{\varphi}_{L}\gamma^{\mu}\frac{1}{2}(\hat{\sigma}_{1} + i\hat{\sigma}_{2})\varphi_{L} = \frac{g_{w}}{\sqrt{2}}(\overline{\nu}_{L}\overline{e}_{L})\gamma^{\mu}\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} = \frac{g_{w}}{\sqrt{2}}\overline{e}_{L}\gamma^{\mu}e_{L} = \frac{g_{w}}{\sqrt{2}}\overline{e}\gamma^{\mu}\frac{1}{2}(1 - \gamma^{5})v$ W^{-} exchange: $j_{-}^{\mu} = \frac{g_{w}}{\sqrt{2}}\overline{\varphi}_{L}\gamma^{\mu}\hat{\sigma}_{-}\varphi_{L} = \frac{g_{w}}{\sqrt{2}}\overline{\varphi}_{L}\gamma^{\mu}\frac{1}{2}(\hat{\sigma}_{1} - i\hat{\sigma}_{2})\varphi_{L} = \frac{g_{w}}{\sqrt{2}}(\overline{\nu}_{L}\overline{e}_{L})\gamma^{\mu}\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} = \frac{g_{w}}{\sqrt{2}}\overline{e}_{L}\gamma^{\mu}v_{L} = \frac{g_{w}}{\sqrt{2}}\overline{e}\gamma^{\mu}\frac{1}{2}(1 - \gamma^{5})v$
Weak neutral current	$j_{3}^{\mu} = \frac{g_{w}}{2} \overline{\varphi}_{L} \gamma^{\mu} \hat{\sigma}_{3} \varphi_{L} = \frac{g_{w}}{2} (\overline{\nu}_{L} \overline{e}_{L}) \gamma^{\mu} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} = g_{w} \frac{1}{2} \overline{\nu}_{L} \gamma^{\mu} \nu_{L} - g_{w} \frac{1}{2} \overline{e}_{L} \gamma^{\mu} e_{L} \qquad e_{L} \qquad \qquad$

Lagrangians in QFT

Classical discrete particles	Lagrangian: L = T - V with $T = E_{kin}, V = E_{pot}$ $\begin{bmatrix} \text{Euler-}\\ \text{Lagrange} \end{bmatrix} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = 0 \begin{bmatrix} Example is a constraint of the second of th$
scalar fields	$ \begin{array}{l} q_i \to \phi_i(t, x, y, z) \ \mathrm{L}(q_i, \dot{q}_i) \to \mathcal{L}(\phi_i, \partial_\mu \phi_i) \\ \dot{q}_i \to \partial_\mu \phi_i \qquad \text{with } \mathrm{L} = \int \mathcal{L} d^3 x \\ \mathrm{Lagrange} \end{array} \begin{array}{l} \text{Euler-} \\ \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial(\partial_\mu \phi_i)} \right) - \frac{\partial \mathcal{L}}{\partial \phi_i} = 0 \\ \mathrm{Lagrange} \end{array} \\ \begin{array}{l} \dots (1) \ \text{with } \phi_i \ \dots \ \text{scalar field} \end{array} $
relativistic (spin 0) scalar field	Free non-interacting scalar field $ \frac{\partial \mathcal{L}_{S}}{\partial (\partial_{\mu}\phi_{l})} \stackrel{(2)}{=} \frac{\partial}{\partial (\partial_{\mu}\phi_{l})} \left(\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2}\right) = \frac{1}{2} \left(\frac{\partial}{\partial (\partial_{\mu}\phi_{l})}\partial_{\mu}\phi\right) \partial^{\mu}\phi + \frac{1}{2}\partial^{\mu}\phi \left(\frac{\partial}{\partial (\partial_{\mu}\phi_{l})}\partial^{\mu}\phi\right) \\ \frac{\partial \mathcal{L}_{S}}{\partial (\partial_{\mu}\phi_{l})} = \frac{1}{2}\partial^{\mu}\phi + \frac{1}{2}\partial^{\mu}\phi \left(\frac{\partial}{\partial (\partial_{\mu}\phi_{l})}\partial_{\mu}\phi\right) = \frac{1}{2}\partial^{\mu}\phi + \frac{1}{2}\partial^{\mu}\phi = \partial^{\mu}\phi \stackrel{(1)}{\Rightarrow} \partial_{\mu}\partial^{\mu}\phi - \frac{\partial \mathcal{L}_{S}}{\partial \phi} = 0 \stackrel{(2)}{\Rightarrow} \partial_{\mu}\partial^{\mu}\phi - (-m^{2}\phi) = 0 \implies \partial_{\mu}\partial^{\mu}\phi + m^{2}\phi = 0 \dots \text{ Klein-Gordon equation for a free scalar field} $
Relativistic (spin half) spinor fields	$ \begin{array}{c} \mathcal{L} \text{ for free-particle Dirac equation} \\ \mathcal{L}_{D} = \overline{\Psi} (i \gamma^{\mu} \partial_{\mu} - m) \Psi \\ = i \overline{\Psi} \gamma^{\mu} \partial_{\mu} \Psi - m \overline{\Psi} \Psi \end{array} \\ \begin{array}{c} \text{Luler-} \\ \text{Lagrange} \end{array} \begin{array}{c} \partial_{\mu} \left(\frac{\partial \mathcal{L}_{D}}{\partial (\partial_{\mu} \Psi)} \right) - \frac{\partial \mathcal{L}}{\partial \Psi} = 0 \\ \partial_{\mu} \left(\frac{\partial \mathcal{L}_{D}}{\partial (\partial_{\mu} \Psi)} \right) - \frac{\partial \mathcal{L}}{\partial \Psi} = 0 \\ (i \gamma^{\mu} \partial_{\mu} - m) \Psi = 0 \\ (i \gamma^{\mu} \partial_{\mu} - m) \Psi = 0 \\ \end{array} \right) $
Relativistic EM vector field	$ \begin{array}{c} \mathcal{L} \text{ for electromagnetic field} \\ \hline \mathcal{L}_{EM} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - j^{\mu}A_{\mu} \\ \hline \dots (5) \end{array} F^{\mu\nu} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{pmatrix} A^{\mu} \stackrel{\text{def}}{=} \begin{pmatrix} \phi \\ \vec{A} \end{pmatrix} F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \\ \hline \text{Maxwell: } \partial_{\mu}F^{\mu\nu} = j^{\nu} \\ A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \partial_{\mu}\chi \end{array} F^{\mu\nu} = \begin{array}{c} \text{Euler-lagrange} \\ \hline \partial_{\nu} \left(\frac{\partial \mathcal{L}_{EM}}{\partial(\partial_{\nu}A_{\mu})} \right) - \frac{\partial \mathcal{L}}{\partial A_{\mu}} = 0 \\ \hline \dots (6) \end{array} $
Deriving Maxwell's equation from \mathcal{L}_{EM} Massive spin 1 narticle	$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \stackrel{(5)}{\Rightarrow} \mathcal{L}_{EM} = -\frac{1}{4}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) - j^{\mu}A_{\mu}$ $\mathcal{L}_{EM} = -\frac{1}{4}\frac{\partial^{\mu}A^{\nu}\partial_{\mu}A_{\nu}}{\mu \leftrightarrow \nu} - \frac{1}{4}\partial^{\nu}A^{\mu}\partial_{\nu}A_{\mu} + \frac{1}{4}\frac{\partial^{\mu}A^{\nu}\partial_{\nu}A_{\mu}}{\mu \leftrightarrow \nu} + \frac{1}{4}\partial^{\nu}A^{\mu}\partial_{\mu}A_{\nu} - j^{\mu}A_{\mu}$ $\mathcal{L}_{EM} = -\frac{1}{4}\frac{\partial^{\nu}A^{\mu}\partial_{\nu}A_{\mu}}{\mu \leftrightarrow \nu} - \frac{1}{4}\partial^{\nu}A^{\mu}\partial_{\nu}A_{\mu} + \frac{1}{4}\partial^{\nu}A^{\mu}\partial_{\mu}A_{\nu} + \frac{1}{4}\partial^{\nu}A^{\mu}\partial_{\mu}A_{\nu} - j^{\mu}A_{\mu} \Rightarrow \mathcal{L}_{EM} = -\frac{1}{2}\partial^{\nu}A^{\mu}\partial_{\nu}A_{\mu} + \frac{1}{2}\partial^{\nu}A^{\mu}\partial_{\mu}A_{\nu} - j^{\mu}A_{\mu} \dots (7)$ $\frac{\partial\mathcal{L}_{EM}}{\partial(\partial_{\nu}A_{\mu})} \stackrel{(2)}{=} -\frac{1}{2}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial^{\nu}_{\mu}A^{\mu}_{\mu}) - \frac{1}{2}\partial^{\nu}A^{\mu}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial_{\nu}A_{\mu}) + \frac{1}{2}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial^{\mu}A^{\mu}_{\nu} + \frac{1}{2}\partial^{\mu}A^{\mu}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial_{\mu}A_{\nu})$ $\frac{\partial\mathcal{L}_{EM}}{\partial(\partial_{\nu}A_{\mu})} = -\frac{1}{2}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial_{\nu}A_{\mu})\partial^{\nu}A^{\mu} - \frac{1}{2}\partial^{\nu}A^{\mu}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial_{\nu}A_{\mu}) + \frac{1}{2}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial_{\nu}A_{\mu})\partial^{\mu}A^{\nu}_{\mu} + \frac{1}{2}\partial^{\mu}A^{\nu}\frac{\partial}{\partial(\partial_{\nu}A_{\mu})}(\partial_{\mu}A_{\mu})$
	$\frac{\partial \mathcal{L}_{EM}}{\partial (\partial_{\nu} A_{\mu})} = -\frac{1}{2} \partial^{\nu} A^{\mu} - \frac{1}{2} \partial^{\nu} A^{\mu} + \frac{1}{2} \partial^{\mu} A^{\nu} + \frac{1}{2} \partial^{\mu} A^{\nu} \Longrightarrow \frac{\partial \mathcal{L}_{EM}}{\partial (\partial_{\nu} A_{\mu})} = -\partial^{\nu} A^{\mu} + \partial^{\mu} A^{\nu} \stackrel{(6)}{\Rightarrow} \partial_{\nu} (-\partial^{\nu} A^{\mu} + \partial^{\mu} A^{\nu}) - \frac{\partial \mathcal{L}}{\partial A_{\mu}} = 0 \stackrel{(7)}{\Rightarrow} \partial_{\nu} (-\partial^{\nu} A^{\mu} + \partial^{\mu} A^{\nu}) - (-j^{\mu}) = 0 \Longrightarrow j^{\mu} = \partial_{\nu} (\partial^{\nu} A^{\mu} - \partial^{\mu} A^{\nu}) \Longrightarrow \underbrace{j^{\mu} = \partial_{\nu} F^{\nu \mu}}_{\nu \leftrightarrow \mu} \Longrightarrow \partial_{\mu} F^{\mu \nu} = j^{\nu} \dots \text{ Maxwell's equation}$ $\overline{\mathcal{L}_{Proca} = -\frac{1}{4} F^{\mu \nu} F_{\mu \nu} + \frac{1}{2} m_{\nu}^{2} A^{\mu} A_{\mu}}$

Local Gauge-Invariance leads to QED Lagrangian

· · · · · · · · · · · · · · · · · · ·	
Local Phase transfor- mation	Requiring the Dirac equation to be invariant under a U(1) <i>local</i> phase transformation introduces the electromagnetic
	interaction. The required gauge symmetry is expressed naturally as the invariance of the Lagrangian under a local phase
	transformation of the fields: $\Psi(x^{\alpha}) \rightarrow \Psi'(x^{\alpha}) = e^{iq \chi(x^{\alpha})} \Psi(x^{\alpha}) \dots (1)$
\mathcal{L}_D is not invariant to	$\mathcal{L}_{D} = i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi \dots (2) \to \mathcal{L}_{D}' = i\overline{\Psi}'\gamma^{\mu}\partial_{\mu}\Psi' - m\overline{\Psi}'\Psi' \stackrel{(1)}{\Rightarrow}$
	$\mathcal{L}_{D}' = i e^{-iq\chi} \overline{\Psi} \gamma^{\mu} \partial_{\mu} (e^{iq\chi} \Psi) - m e^{-iq\chi} \overline{\Psi} e^{iq\chi} \Psi = e^{-iq\chi} \overline{\Psi} \gamma^{\mu} \left((\partial_{\mu} e^{iq\chi}) \Psi + e^{iq\chi} \partial_{\mu} \Psi \right) - m \overline{\Psi} \Psi$
local phase transfor-	$\mathcal{L}_{D}^{\prime} = ie^{-iq\chi}\overline{\Psi}\gamma^{\mu} (iq(\partial_{\mu}\chi)e^{iq\chi}\Psi + e^{iq\chi}\partial_{\mu}\Psi) - m\overline{\Psi}\Psi = -e^{-iq\chi}\overline{\Psi}\gamma^{\mu}q(\partial_{\mu}\chi)e^{iq\chi}\Psi + ie^{-iq\chi}\overline{\Psi}\gamma^{\mu}e^{iq\chi}\partial_{\mu}\Psi - m\overline{\Psi}\Psi$
mations	$\mathcal{L}'_{D} = i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi - q\overline{\Psi}\gamma^{\mu}(\partial_{\mu}\chi)\Psi \stackrel{(2)}{\Rightarrow} \mathcal{L}'_{D} = \mathcal{L}_{D} - q\overline{\Psi}\gamma^{\mu}(\partial_{\mu}\chi)\Psi \dots (2) \dots \text{ not invariant to local phase transformations}$
	The required gauge-invariance can be restored by replacing the derivative ∂_μ with the covariant derivative D_μ :
gauge invariant ($\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$ (3) where A_{μ} is a new gauge field that transforms as $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \partial_{\mu}\chi$ (4)
for spin-half	$(2)(3) \Longrightarrow \mathcal{L}_{inv} = i\overline{\Psi}\gamma^{\mu}D_{\mu}\Psi - m\overline{\Psi}\Psi \stackrel{(3)}{\Rightarrow} \mathcal{L}_{inv} = i\overline{\Psi}\gamma^{\mu}(\partial_{\mu} + iqA_{\mu})\Psi - m\overline{\Psi}\Psi = i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - q\overline{\Psi}\gamma^{\mu}A_{\mu}\Psi - m\overline{\Psi}\Psi \Longrightarrow$
fermion	$\mathcal{L}_{inv} = \overline{\Psi} (i\gamma^{\mu}\partial_{\mu} - m)\Psi - q\overline{\Psi}\gamma^{\mu}A_{\mu}\Psi \dots (5) \stackrel{(2)}{\Rightarrow} \mathcal{L}_{inv} = \mathcal{L}_{D} - q\overline{\Psi}\gamma^{\mu}\Psi A_{\mu} \dots (6) \text{ Interaction of the fermion with the photon}$
\mathcal{L}_{inv} is invar-	$\mathcal{L}'_{inv} = \mathcal{L}'_D - q \overline{\Psi}' \gamma^{\mu} A'_{\mu} \Psi' \stackrel{(2)}{\Rightarrow} \mathcal{L}'_{inv} = \mathcal{L}_D - q \overline{\Psi} \gamma^{\mu} (\partial_{\mu} \chi) \Psi - q \overline{\Psi}' \gamma^{\mu} A'_{\mu} \Psi' \stackrel{(1)}{\Rightarrow}$
iant to gauge	$\mathcal{L}_{inv}^{\prime} = \mathcal{L}_{D} - q\overline{\Psi}\gamma^{\mu}(\partial_{\mu}\chi)\Psi - qe^{-iq\chi}\overline{\Psi}\gamma^{\mu}A_{\mu}^{\prime}e^{iq\chi}\Psi \stackrel{(4)}{\Rightarrow}\mathcal{L}_{inv}^{\prime} = \mathcal{L}_{D} - q\overline{\Psi}\gamma^{\mu}(\partial_{\mu}\chi)\Psi - q\overline{\Psi}\gamma^{\mu}(A_{\mu} - \partial_{\mu}\chi)\Psi$
transform.	$\mathcal{L}'_{inv} = \mathcal{L}_D - q\overline{\Psi}\gamma^{\mu}(\partial_{\mu}\chi)\Psi - q\overline{\Psi}\gamma^{\mu}A_{\mu}\Psi + q\overline{\Psi}\gamma^{\mu}(\partial_{\mu}\chi)\Psi = \mathcal{L}_D - q\overline{\Psi}\gamma^{\mu}\Psi A_{\mu} \stackrel{(2)}{\Rightarrow} \mathcal{L}'_{inv} = \mathcal{L}_{inv}$
	Considering that $F^{\mu\nu}F_{\mu\nu}$ is already invariant under the transformation $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \partial_{\mu}\chi$, we can write the complete QED
$\mathcal{L}_{\mathit{QED}}$	Lagrangian, describing the fields for the electron (with $q = -e$), the massless photon and the interaction between them as
	$\mathcal{L}_{QED} = i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m_{e}\overline{\Psi}\Psi + e\overline{\Psi}\gamma^{\mu}\Psi A_{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} \text{with } j^{\mu} = -e\overline{\Psi}\gamma^{\mu}\Psi \Longrightarrow$
	$\begin{array}{c} \text{kinetic term} \\ \text{electron} \end{array} \begin{array}{c} \text{electron} \\ \text{mass term} \\ \text{e}^{-\gamma} \text{ interaction} \end{array} \begin{array}{c} \text{kinetic term} \\ \text{photon} \end{array}$
	$\mathcal{L}_{QED} = i \overline{\Psi} \gamma^{\mu} \partial_{\mu} \Psi - m_e \overline{\Psi} \Psi - j^{\mu} A_{\mu} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} = \mathcal{L}_D + \mathcal{L}_{EM}$

The Higgs Mechanism - Introduction

	If the photon were massive, the Lagrangian of the QED would contain an additional term $rac{1}{2}m_{Y}^{2}A^{\mu}A_{\mu}$
	$\mathcal{L}_{QED}^{\text{massive}} = i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi + e\overline{\Psi}\gamma^{\mu}\Psi A_{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}m_{\gamma}^{2}A^{\mu}A_{\mu}$
	kinetic term potential term kinetic term photon mass electron e_v interaction photon
Problem:	But the new mass-term is not gauge invariant: $\frac{1}{2}m_V^2 A^{\mu}A_{\mu} \rightarrow \frac{1}{2}m_V^2 (A^{\mu} - \partial^{\mu}\chi)(A_{\mu} - \partial_{\mu}\chi) \neq \frac{1}{2}m_V^2 A^{\mu}A_{\mu}$
particle	This problem is not limited to the U(1) local gauge symmetry of QED, it also applies to the $SU(3)$ gauge symmetries of QCD
hasses break gauge invariance	and the $SU(2)_L$ gauge symmetry of the weak interaction. This is a problem for the large masses of the W and Z bosons.
	The problem is not restricted to the gauge bosons. The electron mass term $m_e \Psi \Psi$ in the QED Lagrangian can be written as:
	$m_{e}\Psi\Psi = m_{e}\Psi\left(\frac{1}{2}(1-\gamma^{5})\Psi + \frac{1}{2}(1+\gamma^{5})\Psi\right) = m_{e}\Psi\left(\frac{1}{2}\Psi_{L} + \frac{1}{2}\Psi_{R}\right)\left \begin{array}{c} (1-\gamma^{-})^{T_{L}} - T_{L} \\ (1+\gamma^{5})\Psi_{R} = \Psi_{R} \end{array} \right $
	$m_e \Psi \Psi = m_e \Psi \left(\frac{1}{2} (1 - \gamma^5) \Psi_L + \frac{1}{2} (1 + \gamma^5) \Psi_R \right) = \frac{1}{2} m_e (\Psi (1 - \gamma^5) \Psi_L + \Psi (1 + \gamma^5) \Psi_R) = \frac{1}{2} m_e (\Psi_R \Psi_L + \Psi_L \Psi_R)$
	In the SU(2) _L gauge transformation of the weak interaction, left-handed particles transform as weak isospin doublets, and right-handed particles as singlets, and therefore the mass term of the electron also breaks the gauge invariance.
	Consider the scalar field ϕ with the potential $V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$ (1) $\psi^{\psi} \phi$
Interacting	The corresponding Lagrangian is: $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \Rightarrow$
scalar field	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} \mu^2 \phi^2 - \frac{1}{4} \lambda \phi^4 \qquad \dots (2)_{*\dots \text{for } \mu^2 > 0}$
	kinetic energy particle self- of particle mass* interaction $\psi \phi \phi$
	The vacuum state is the lowest energy state of ϕ and corresponds $V(\phi)$ $V(\phi)$
	to the minumum of $V(\phi)$. For $V(\phi)$ to have a minimum: $\lambda > 0$.
	If $\mu^2 > 0 \Rightarrow V(\phi)$ has a minimum at $\phi = 0 \Rightarrow$
	Vacuum state at $\phi = 0$, scalar particle with mass μ , four-point self-interaction proportional to ϕ^4
symmetry	
breaking	If $\mu^2 < 0 \Rightarrow V(\phi)$ has a minimum at $\phi_{min} = \pm v = \pm \sqrt{\frac{-\mu^2}{\lambda}} \Rightarrow \sqrt{\frac{-v}{\lambda}}$
	μ can no longer be interpreted as mass, there are two
	degenerate vacuum states at $\phi = \pm v$. Choice of vacuum state $\phi = \frac{1}{2} e^{-\phi} \phi$
	bleaks symmetry of $\Sigma \rightarrow$ spontaneous symmetry of eaching
	*calulating $\phi_{min} = \pm v$ for $\mu^2 < 0$: $V(v) = 0 \Rightarrow \mu^2 v + \lambda v^3 = 0 \Rightarrow \mu^2 + \lambda v^2 = 0 \Rightarrow \lambda v^2 = -\mu^2 \Rightarrow v = \pm \sqrt{\frac{1}{\lambda}} \dots (3)$
	If the vacuum state of the scalar field is chosen to be at $\phi = +v$, the excitations of the field, which describes the particle state, can be obtained by considering perturbations of the field ϕ around the vacuum state: $\phi(x) = v + \eta(x) \dots (4)$
	Because the vacuum state $v = \text{const.} \stackrel{(4)}{\Rightarrow} \partial_{\mu} \phi = \partial_{\mu} \eta \dots (5)$ By inserting (4) and (5) into (2) we get:
	$\mathcal{L}(\eta) = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta - \frac{1}{2} \mu^{2} (\nu + \eta)^{2} - \frac{1}{4} \lambda (\nu + \eta)^{4} \left \nu = \sqrt{\frac{-\mu^{2}}{\lambda}} \Longrightarrow \nu^{2} = \frac{-\mu^{2}}{\lambda} \Longrightarrow -\mu^{2} = \lambda \nu^{2} \Longrightarrow \mu^{2} = -\lambda \nu^{2} \dots (6)$
aotting f(n)	$\mathcal{L}(\eta) = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \lambda v^{2} (v^{2} + \eta^{2} + 2v\eta) - \frac{1}{4} \lambda (v^{4} + 4v^{3}\eta + 6v^{2}\eta^{2} + 4v\eta^{3} + \eta^{4})$
from $\mathcal{L}(\eta)$	$\mathcal{L}(\eta) = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \lambda v^{4} + \frac{1}{2} \lambda v^{2} \eta^{2} + \lambda v^{3} \overline{\eta} - \frac{1}{4} \lambda v^{4} - \lambda v^{3} \overline{\eta} - \frac{3}{2} \lambda v^{2} \eta^{2} - \lambda v \eta^{3} - \frac{1}{4} \lambda \eta^{4}$
perturbations	$\mathcal{L}(\eta) = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{4} \lambda v^{4} - \lambda v^{2} \eta^{2} - \lambda v \eta^{3} - \frac{1}{4} \lambda \eta^{4} \left \frac{1}{4} \lambda v^{4} \right $ is constant and therefore irrelevant \Longrightarrow
vacuum state	$\mathcal{L}(\eta) = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta - \lambda v^2 \eta^2 - \lambda v \eta^3 - \frac{1}{4} \lambda \eta^4 \dots (7) \text{ The term } \lambda v^2 \eta^2 \text{ corresponds to the original mass term } \frac{1}{2} \mu^2 \phi^2 \Longrightarrow$
	$\mathcal{L}(\eta) = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta - \frac{1}{2} m_{\eta}^2 \eta^2 - \lambda v \eta^3 - \frac{1}{4} \lambda \eta^4 \text{with } \frac{1}{2} m_{\eta}^2 = \lambda v^2 \Longrightarrow m_{\eta}^2 = 2\lambda v^2 \stackrel{(6)}{\Longrightarrow} m_{\eta}^2 = -2\mu^2 \Longrightarrow \qquad m_{\eta} = \sqrt{-2\mu^2}$
	$\mathcal{L}(\eta) = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta - \frac{1}{2} m_{\eta}^{2} \eta^{2} - V(\eta) \text{ with } V(\eta) = \frac{\lambda v \eta^{3}}{4} + \frac{1}{4} \lambda \eta^{4}$
	kinetic enery mass triple quartic of particle term interact.
	η η η

Symmetry breaking for a complex scalar field

	The idea of spontaneous symmetry breaking is now applied to a <i>complex</i> scalar field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2) \dots (1)$
	The corresponding Lagrangian is: $\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - V(\phi)$ with $V(\phi) = \mu^2(\phi^*\phi) + \lambda(\phi^*\phi)^2$ and $\lambda > 0$ (2)
	This special form becomes clear when ${\cal L}$ is expressed in terms of ϕ_1 and ϕ_2 :
	$\mathcal{L} = (\partial_{\mu}\phi)^{*}(\partial^{\mu}\phi) - (\phi^{*}\phi) - \lambda(\phi^{*}\phi)^{2} \phi^{*}\phi = \phi ^{2} = \frac{1}{2}(\phi_{1}^{2} + \phi_{2}^{2})$
Lagrangian	$\mathcal{L} = (\partial_{\mu}\phi)^{*}(\partial^{\mu}\phi) - \frac{1}{2}\mu^{2}(\phi_{1}^{2} + \phi_{2}^{2}) - \frac{1}{4}\lambda(\phi_{1}^{2} + \phi_{2}^{2})^{2} \stackrel{(1)}{\Rightarrow}$
	$\mathcal{L} = \frac{1}{\sqrt{2}} \left(\partial_{\mu} \phi_{1} - i \partial_{\mu} \phi_{2} \right) \frac{1}{\sqrt{2}} \left(\partial^{\mu} \phi_{1} + i \partial^{\mu} \phi_{2} \right) - \frac{1}{2} \mu^{2} (\phi_{1}^{2} + \phi_{2}^{2}) - \frac{1}{4} \lambda (\phi_{1}^{2} + \phi_{2}^{2})^{2}$
	$\mathcal{L} = \frac{1}{2} \Big(\partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + i \partial_{\mu} \phi_1 \partial^{\mu} \phi_2 - i \partial^{\mu}_{\downarrow} \phi_1 \partial^{\mu}_{\mu} \phi_2 + \partial_{\mu} \phi_2 \partial^{\mu} \phi_2 \Big) - \frac{1}{2} \mu^2 (\phi_1^2 + \phi_2^2) - \frac{1}{4} \lambda (\phi_1^2 + \phi_2^2)^2 \Big)$
	$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + i \partial_{\mu} \phi_1 \partial^{\mu} \phi_2 - i \partial_{\mu} \phi_1 \partial^{\mu} \phi_2 + \partial_{\mu} \phi_2 \partial^{\mu} \phi_2 \right) - \frac{1}{2} \mu^2 (\phi_1^2 + \phi_2^2) - \frac{1}{4} \lambda (\phi_1^2 + \phi_2^2)^2$
	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + \frac{1}{2} \partial_{\mu} \phi_2 \partial^{\mu} \phi_2 - \frac{1}{2} \mu^2 (\phi_1^2 + \phi_2^2) - \frac{1}{4} \lambda (\phi_1^2 + \phi_2^2)^2 \dots (3)$
	The vacuum state is the lowest energy state of ϕ and corresponds to the minumum of V(ϕ). For V(ϕ) to have a minimum: $\lambda > 0$.
	If $\mu^2 > 0 \implies V(\phi)$ has a minimum at $\phi_1 = \phi_2 = 0 \implies$ Vacuum state at $\phi_1 = \phi_2 = 0$
symmetry	If $\mu^2 < 0 \Rightarrow V(\phi)$ has a minimum at $\phi_1^2 + \phi_2^2 = v^2 = \frac{-\mu^2}{\lambda} \Rightarrow \phi_1$
breaking	indicated by the circle in image. The physical vacuum state corresponds to a paticular point on the circle, breaking the global U(1) symmetry of \mathcal{L} . \Rightarrow "spontaneous symmetry breaking"
	calculating v^2 : $\phi^\phi \stackrel{\text{def}}{=} s \stackrel{(2)}{\Rightarrow} V = \mu^2 s + \lambda s^2 \dots (4) V'(s) = 0 \stackrel{(4)}{\Rightarrow} \mu^2 + 2\lambda s = 0 \implies 2\lambda s = -\mu^2 \implies s = \frac{-\mu^2}{2\lambda} s = \phi^* \phi \implies 0$
	$\phi^*\phi = \frac{-\mu^2}{2\lambda} \phi^*\phi = \phi ^2 \stackrel{(1)}{=} \frac{1}{2}(\phi_1^2 + \phi_2^2) \Longrightarrow \frac{1}{2}(\phi_1^2 + \phi_2^2) = \frac{-\mu^2}{2\lambda} \Longrightarrow \phi_1^2 + \phi_2^2 = \frac{-\mu^2}{\lambda} = \nu^2 \dots (5a) \Longrightarrow \mu^2 = -\lambda\nu^2 \dots (5b)$
	Without l.o.g. the vacuum state can be chosen to be in real direction $(\phi_1, \phi_2) = (v, 0)$, and the complex scalar field ϕ can be
	expanded by considering perturbations $\eta(x)$ and $\xi(x)$ around the vacuum state: $\left[\phi_1(x) = v + \eta(x), \phi_2(x) = \xi(x)\right]$ (6)
	Because the vacuum state $v = \text{const.} \Rightarrow \partial_{\mu}\phi = \partial_{\mu}\eta = \partial_{\mu}\xi \dots (7)$ By inserting (6) and (7) into (4) we get:
	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi - \frac{1}{2} \mu^{2} ((v+\eta)^{2} + \xi^{2}) - \frac{1}{4} \lambda ((v+\eta)^{2} + \xi^{2})^{2} \Longrightarrow$
	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi + \frac{1}{2} \lambda v^{2} ((v+\eta)^{2} + \xi^{2}) - \frac{1}{4} \lambda ((v+\eta)^{2} + \xi^{2})^{2}$
	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi + \frac{1}{2} \lambda v^{2} (v^{2} + \eta^{2} + 2v\eta + \xi^{2}) - \frac{1}{4} \lambda (v^{2} + \eta^{2} + 2v\eta + \xi^{2})^{2}$
	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi +$
	$\frac{1}{2}\lambda v^4 + \frac{1}{2}\lambda v^2 \eta^2 + \lambda v^3 \eta + \frac{1}{2}\lambda v^2 \xi^2 - \frac{1}{4}\lambda (v^4 + 4v^3 \eta + 6v^2 \eta^2 + 4v \eta^3 + \eta^4 + 2v^2 \xi^2 + 4v \eta \xi^2 + 2\eta^2 \xi^2 + \xi^4)$
getting	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi +$
$\mathcal{L}(\eta, \xi)$ from perturbations	$\frac{\frac{1}{2}\lambda v^4 + \frac{1}{2}\lambda v^2 \eta^2 + \lambda v^3 \eta + \frac{1}{2}\lambda v^2 \xi^2 - \frac{1}{4}\lambda v^4 - \lambda v^3 \eta - \frac{3}{2}\lambda v^2 \eta^2 - \lambda v \eta^3 - \frac{1}{4}\lambda \eta^4 - \frac{1}{2}\lambda v^2 \xi^2 - \lambda v \eta \xi^2 - \frac{1}{2}\lambda \eta^2 \xi^2 - \frac{1}{4}\lambda \xi^4$
around the	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi + \frac{1}{4} \lambda v^{4} - \lambda v^{2} \eta^{2} - \lambda v \eta^{3} - \frac{1}{4} \lambda \xi^{4} - \frac{1}{4} \lambda \eta^{4} - \lambda v \eta \xi^{2} - \frac{1}{2} \lambda \eta^{2} \xi^{2} \left \lambda v^{4} = const \Longrightarrow \text{irrelevant} \right $
vacuum state	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi - \lambda v^{2} \eta^{2} - \lambda v \eta^{3} - \frac{1}{4} \lambda \xi^{4} - \frac{1}{4} \lambda \eta^{4} - \lambda v \eta \xi^{2} - \frac{1}{2} \lambda \eta^{2} \xi^{2} \stackrel{(5b)}{\Longrightarrow}$
the	$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi + \mu^2 \eta^2 - \lambda v \eta^3 - \frac{1}{4} \lambda \xi^4 - \frac{1}{4} \lambda \eta^4 - \lambda v \eta \xi^2 - \frac{1}{2} \lambda \eta^2 \xi^2 \left[\text{let's express the mass term } + \mu^2 \eta^2 \text{ as } - \frac{1}{2} m_{\eta}^2 \eta^2 \right]$
Goldstone boson	$ \mathcal{L} = \frac{1}{2} \frac{\partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \xi \partial^{\mu} \xi}{\frac{1}{2} m_{\eta}^{2} \eta^{2}} - \frac{\lambda v \eta^{3}}{(a)} - \frac{1}{2} \frac{\lambda \eta^{4}}{(b)} - \frac{1}{2} \frac{\lambda \xi^{4}}{(c)} - \frac{\lambda v \eta \xi^{2}}{(d)} - \frac{1}{2} \frac{\lambda \eta^{2} \xi^{2}}{(e)} \right - \frac{1}{2} m_{\eta}^{2} \eta^{2} = \mu^{2} \eta^{2} \Longrightarrow \underbrace{m_{\eta} = \sqrt{-2\mu^{2}}}_{\text{term}} $
	η η η ξ ξ ξ η ξ \
	$\eta \left(\lambda v \right) = \left(\frac{1}{4} \lambda - \eta \left(\lambda v \right) \right) = \left(\frac{1}{2} \lambda - \eta \right)$
	$\eta \eta \eta \xi \xi \xi \eta \xi \downarrow \downarrow \downarrow \phi_1$
	The excitiations of the massive field η are in the ϕ_1 -direction where the potential
	$V(\phi)$ is (to the first order) quadratic. In contrast, the particles described by the η
	massless field ξ correspond to excitations in ϕ_2 -direction, where the potential does not change. This massless sclar particle is known as the Goldstone boson

The Higgs Mechanism

General	In the Higgs mechanism, the spontaneous symmetry breaking of a complex scalar field $V(\phi) = \mu^2 (\phi^* \phi) + \lambda (\phi^* \phi)^2$ is embedded in a theory with <i>local</i> gauge symmetry. In this example, we will use II(1) local gauge symmetry.
	The Lagrangian for a complex scalar field $\mathcal{L} = (\partial_{-}\phi)^{*}(\partial^{\mu}\phi) - V(\phi)$ with $V(\phi) = \mu^{2}(\phi^{*}\phi) + \lambda(\phi^{*}\phi)^{2}$ is <i>not</i> invariant under
	the U(1) local gauge transformation $\phi(x) \rightarrow \phi'(x) = \phi(x) e^{ig \chi(x)}$. This is because of the derivatives $(\partial_{\mu}\phi)^*(\partial^{\mu}\phi)$ in the
	Lagrangian. The required U(1) local gauge invariance can be achieved by replacing the derivative ∂_μ with the derivative
	$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + igB_{\mu}$ (1). The resulting Lagrangian $\mathcal{L}_{inv} = (D_{\mu}\phi)^*(D^{\mu}\phi) - V(\phi)$ is gauge invariant, provided the new
	gauge field B_{μ} transforms as $B_{\mu} \rightarrow B'_{\mu} = B_{\mu} - \partial_{\mu} \chi(x)$. This is then the combined Lagrangian for the complex scalar field ϕ
Invariance under local	and the gauge field B_{μ} : $\mathcal{L} = (D_{\mu}\phi)^*(D^{\mu}\phi) - \mu^2(\phi^*\phi) - \lambda(\phi^*\phi)^2 - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$ with $F^{\mu\nu} = \partial^{\mu}B^{\nu} - \partial^{\nu}B^{\mu} \stackrel{(1)}{\Rightarrow}$
gauge trafo	$\mathcal{L} = \left(\left(\partial_{\mu} + igB_{\mu} \right) \phi \right)^* \left(\left(\partial^{\mu} + igB^{\mu} \right) \phi \right) - \mu^2 (\phi^* \phi) - \lambda (\phi^* \phi)^2 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \right)$
	$\mathcal{L} = \left(\partial_{\mu}\phi + igB_{\mu}\phi\right)\left(\partial^{\mu}\phi + igB^{\mu}\phi\right) - \mu^{2}(\phi^{*}\phi) - \lambda(\phi^{*}\phi)^{2} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$
	$\mathcal{L} = \left(\left(\partial_{\mu} \phi \right)^* - igB_{\mu} \phi^* \right) \left(\partial^{\mu} \phi + igB^{\mu} \phi \right) - \mu^2 (\phi^* \phi) - \lambda (\phi^* \phi)^2 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$
	$\mathcal{L} = \left(\partial_{\mu}\phi\right)^{*}\left(\partial^{\mu}\phi\right) - \mu^{2}\left(\phi^{*}\phi\right) - \lambda\left(\phi^{*}\phi\right)^{2} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}\underbrace{-igB_{\mu}\phi^{*}\left(\partial^{\mu}\phi\right) + ig\left(\partial_{\mu}\phi\right)^{*}B^{\mu}\phi + g^{2}B_{\mu}B^{\mu}\phi^{*}\phi}_{\text{additional Terms from }\partial_{\mu}\rightarrow D_{\mu}=\partial_{\mu}+igB_{\mu}}\right) \dots (2)$
	Again, for $\mu^2 < 0$ the vacuum state is degenerate and the choice of the physical vacuum state spontaneously breaks the the
	symmtry of the Lagrangian. As before, the vacuum state can be chosen w.l.o.g. to be in real direction $(\phi_1, \phi_2) = (v, 0)$, and the complex scalar field ϕ can be expanded by considering perturbations $\eta(x)$ and $\xi(x)$ around the vacuum state:
symmetry	$\phi(x) = \frac{1}{\sqrt{2}} (v + \eta(x) + i \xi(x)) \dots (3)$ Substituting this into (2) leads to
breaking	$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \eta) (\partial^{\mu} \eta) - \lambda v^2 \eta^2 + \frac{1}{2} (\partial_{\mu} \xi) (\partial^{\mu} \xi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} g^2 v^2 B_{\mu} B^{\mu} - V_{int} + g v B_{\mu} \partial^{\mu} \xi \dots (4)$
	$\underbrace{ \begin{array}{c} \hline \\ massive \eta \end{array}}_{ \begin{array}{c} massless \xi \\ (Goldstone) \end{array}} \begin{array}{c} massive gauge field B_{\mu} \\ massive gauge field B_{\mu} \\ interactions \\ massive gauge field B_{\mu} \end{array}} \underbrace{ \begin{array}{c} \eta B \\ \xi B \\ \eta B \\ \eta B \\ \xi B \\ \eta B \\ \eta B \\ \xi B \\ \eta B \\ \eta B \\ \xi B \\ \eta B \\$
	The previously massless gauge field B_{μ} has acquired a mass term $\frac{1}{2}g^2v^2B_{\mu}B^{\mu}$, achieving the aim of giving a mass to the gauge
	boson of the local gauge symmetry.
Degrees of	The original Lagrangian contained four degrees of freedom: One for each of the scalar fields ϕ_1 and ϕ_2 , and two transverse
freedom	polarisation states for the massless gauge field B_{μ} . In the Lagrangian (4) the gauge boson has become massive and therefore
problem	$qvB_{\mu}\partial^{\mu}\xi$ term appears to represent a direct coupling between the Goldstone field ξ and the gauge field B_{μ} .
	To solve this, we re-write the Lagrangian (4), starting with just re-arranging the terms:
	$\mathcal{L} = \frac{1}{2}g^2v^2B_{\mu}B^{\mu} + \frac{1}{2}(\partial_{\mu}\xi)(\partial^{\mu}\xi) + gvB_{\mu}\partial^{\mu}\xi + \frac{1}{2}(\partial_{\mu}\eta)(\partial^{\mu}\eta) - \lambda v^2\eta^2 - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - V_{int}$
	$\mathcal{L} = \frac{1}{2}g^{2}v^{2}(B_{\mu})^{2} + \frac{1}{2}(\partial_{\mu}\xi)^{2} + gvB_{\mu}(\partial^{\mu}\xi) + \frac{1}{2}(\partial_{\mu}\eta)(\partial^{\mu}\eta) - \lambda v^{2}\eta^{2} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - V_{int}$
	$\mathcal{L} = \frac{1}{2}g^{2}v^{2}\left(\left(B_{\mu}\right)^{2} + \frac{1}{c^{2}v^{2}}\left(\partial_{\mu}\xi\right)^{2} + 2\frac{1}{cv}B_{\mu}(\partial^{\mu}\xi)\right) + \frac{1}{2}\left(\partial_{\mu}\eta\right)(\partial^{\mu}\eta) - \lambda v^{2}\eta^{2} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - V_{int}$
Eliminating	$\int_{a} -\frac{1}{a^{2}w^{2}} \left(P + \frac{1}{a} \left(\frac{1}{a} \right)^{2} + \frac{1}{a} \left(\frac{1}{a} \right) \left(\frac{1}{a^{\mu}} \right) + \frac{1}{a^{2}w^{2}} + \frac{1}{a^{\mu}} \frac{1}$
stone boson	$\mathcal{L} = \frac{1}{2}g \mathcal{V} \left(\underbrace{b_{\mu} + \frac{1}{gv}(b_{\mu})}_{gv} \underbrace{b_{\mu} + \frac{1}{gv}(b_{\mu})}_{gv} \underbrace{b_{\nu} + \frac{1}{2}(b_{\mu})(b_{\nu})}_{gv} + \frac{1}{2} \underbrace{b_{\nu} + \frac{1}{4}r^{\nu}}_{gv} \underbrace{b_{\mu} - \frac{1}{4}r^{\mu$
by gauge	$\stackrel{\text{\tiny def}}{=} B_{\mu}^{\prime}$
choice	$\mathcal{L} = \underbrace{\frac{1}{2}}_{2} \underbrace{(\partial_{\mu} \eta)(\partial^{\mu} \eta) - \lambda v^{2} \eta^{2}}_{4} - \underbrace{\frac{1}{4}}_{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} g^{2} v^{2} B_{\mu}' B^{\mu}}_{\mu B'} \underbrace{-V_{int}}_{\eta B} \qquad \dots (5)$
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	By choosing the gauge transformation $B_{\mu} \to B'_{\mu} = B_{\mu} + \frac{1}{gv} (d_{\mu}\xi)$ we eliminated the the Goldstone boson. ("The Goldstone ξ
	has been eaten by the gauge field B'_{μ} . This transformation is equivalent to $B_{\mu} \to B'_{\mu} = B_{\mu} - \partial_{\mu} \chi(x)$ with $\chi(x) \stackrel{\text{def}}{=} -\frac{\zeta(x)}{gv}$ (6)
	The corresponding gauge transformation of $\phi(x)$ is therefore $\phi(x) \rightarrow \phi'(x) = \phi(x) e^{-ig\frac{\xi(x)}{g_v}} = \phi(x) e^{-i\xi(x)/v}$ (7)
	$f(x) \stackrel{\text{\tiny def}}{=} \frac{1}{\sqrt{2}} (v + \eta(x)) e^{i\xi(x)/v} \dots (8) \eta$ and ξ are just small excitations $\Rightarrow e^{i\xi(x)/v} \approx 1 + \frac{i\xi(x)}{v} \Rightarrow$
Unitary gauge	$\mathbf{f}(x) = \frac{1}{\sqrt{2}}(\nu + \eta(x))\left(1 + \frac{i\xi(x)}{\nu}\right) = \frac{1}{\sqrt{2}}\left(\nu + \eta(x) + i\xi(x) + \frac{i\eta(x)\xi(x)}{\nu}\right) \left \eta(x)\xi(x) \approx 0 \Longrightarrow$
	$\mathbf{f}(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) + i\xi(x) \right) \stackrel{(3)}{\Rightarrow} \mathbf{f}(x) = \phi(x) \stackrel{(8)}{\Rightarrow} \phi(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} \stackrel{(7)}{\Rightarrow} \phi'(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} \Rightarrow \phi(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} \Rightarrow \phi(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} \Rightarrow \phi(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} \Rightarrow \phi(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} \Rightarrow \phi(x) = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} e^{-i\xi(x)/v} = \frac{1}{\sqrt{2}} \left(v + \eta(x) \right) e^{i\xi(x)/v} e^{-i\xi(x)/v} e$
	$\phi'(x) = \frac{1}{\sqrt{2}} (\nu + \eta(x)) \left \eta(x) \stackrel{\text{def}}{=} h(x) \text{ Higgs } \phi'(x) = \frac{1}{\sqrt{2}} (\nu + h(x)) \dots (9) \stackrel{(2)}{\Rightarrow}$

