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Geometry and Topology 
11.12.2017 

 

Topological Spaces and Homotopy (Topologische Räume und Homotopie) 

Finite Intersection 
(“Endliche Schnittmenge”) 

The finite intersection A ∩ B of two (finite) sets A and B is the set that contains all elements of A that also 
belong to B (or vice versa), but no other element: 𝐴⋂𝐵 = {𝑥: 𝑥 ∈ 𝐴 ⋀ 𝑥 ∈ 𝐵 } 

Arbitrary Intersection The intersection of an arbitrary set of sets (collection of sets, family of sets) {𝐴𝑖: 𝑖 ∈ 𝐼} is defined as: 
𝑥 ∈ ⋂ 𝐴𝑖𝑖∈𝐼 ⟺ {𝑥:∀𝑖 ∈ 𝐼: 𝑥 ∈ 𝐴𝑖}. Attention: If the index set 𝐼 only contains the empty set (𝐼 = {Ø}) then 
with this definition every possible x satisfies the condition and the intersection is the universal set. 

Finite Union (“Endliche 
Vereinigungsmenge”) 

The finite union A ∩ B of two (finite) sets A and B is the set of elements which are in A, in  B, or both A and B: 
𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ⋁ 𝑥 ∈ 𝐵 } 

Arbitrary Union (“Endliche 
Vereinigungsmenge”) 

The union of an arbitrary set of sets (collection of sets, family of sets) {𝐴𝑖: 𝑖 ∈ 𝐼} is defined as: 
𝑥 ∈ ⋃ 𝐴𝑖𝑖∈𝐼 ⟺ {𝑥:∃𝑖 ∈ 𝐼: 𝑥 ∈ 𝐴𝑖}  

Carthesian Product 
(Karth. Produkt) 

For sets A and B, the cartesian product 𝐴 × 𝐵 is the set of all ordered pairs (𝑎, 𝑏) where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵: 
𝐴 × 𝐵 = {(𝑎, 𝑏): 𝑎 ∈ 𝐴⋀𝑏 ∈ 𝐵} 

Cartesian square The cartesian square of a set 𝑋 is the Cartesian product 𝑋2 = 𝑋 × 𝑋.  
An example is the 2-dimensional plane ℝ2 = ℝ× ℝ . ℝ2 is the set of all points (𝑥, 𝑦) where 𝑥 and 𝑦 are real 
numbers (Cartesian coordinate system). 

Metric Space 
(Metrischer Raum) 

Metric Space is a set for which distances between all members of the set are defined.  Hence, the Metric 
Space (𝑋, 𝑑) is a set 𝑋 with a (distance-)function d: 𝑋 × 𝑋 → ℝ≥0 such that  
(1) d(𝑥, 𝑦) = d(𝑦, 𝑥) (symmetry), 
(2) d(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 (identity of indiscernibles), and 
(3) d(𝑥, 𝑦) + d(𝑦, 𝑧) ≥ d(𝑥, 𝑧) (triangle inequality). 
Remark: Non-negativity  d(𝑥, 𝑦) ≥ 0 follows from (1), (2), (3). 
Examples: (1) Euclidean Metric on ℝ𝑛 and subsets, (2) Discrete Metric d(𝑥, 𝑦) = 1 ∀𝑥 ≠ 𝑦 

𝜀-Neighbourhood 
(“𝜀-Umgebung”) 

𝜺-Neighbourhood (a.k.a Open Ball Sphere) in metric space (𝑋, 𝑑): 𝑈𝜀(𝑥) = {𝑦𝜖𝑋: d(𝑥, 𝑦) < 𝜀} 
𝑈𝜀(𝑥) is open 

Continuity at a point 
(Stetigkeit in einem Pkt) 

A map f: 𝑋 → �̃� of metric spaces (𝑋, 𝑑) and (�̃�, �̃�) is called continuous at 𝒙 ∈ 𝑿 if  

for any 𝜀 > 0 there exists a 𝛿 > 0, such that d̃(f(𝑥) , f(𝑦)) < 𝜀 for all 𝑦 with d(𝑥, 𝑦) < 𝛿 

∀𝜀 > 0: ∃𝛿 > 0: [d(𝑥, 𝑦) < 𝛿: d̃(f(𝑥) , f(𝑦)) < 𝜀], equivalent to:  

∀𝜀 > 0: ∃𝛿 > 0: [𝑦 ∈ 𝑈𝛿(𝑥) ⟹ f(𝑦) ∈ 𝑈𝜀(f(𝑥))]   
Continuous Map 
(Stetige Abbildung) 

A map f: 𝑋 → �̃� of metric spaces (𝑋, 𝑑) and (�̃�, �̃�) is continuous if it is continuous at every 𝑥 ∈ 𝑋. 

Open Subset 
(Offene Teilmenge) 

A subset 𝒪 ⊂ 𝑋 of a metric space (𝑋, 𝑑) is called open subset if each of its points has an 𝜀-neighbourhood 
that is contained in 𝒪, i.e. for each of  𝑥 ⊂ 𝒪 there exists a positive number 𝜀 with 𝑈𝜀(𝑥) ⊆ 𝒪:  
∀𝑥 ∈ 𝒪 ∃𝜀 > 0: 𝑈𝜀(𝑥) ⊆ 𝒪. Example: The set of points (𝑥, 𝑦) in ℝ2 {(𝑥, 𝑦): 𝑥2 + 𝑦2 < 𝑟2}  

Inverse Image (Preimage) 
(Urbild) 

The inverse image (or Preimage) of a set 𝑆 ⊆ �̃� under a function f: 𝑋 → �̃� between metric spaces (𝑋, 𝑑) and 

(�̃�, �̃�) is f−1[𝑆] ≝ {𝑥 ∈ 𝑋: f(𝑥) ∈ 𝑆} 

Continous Function 
(Stetige Funktion) 

Lemma: A function f: 𝑋 → �̃� between metric spaces (𝑋, 𝑑) and (�̃�, �̃�) is continuous if and only if the inverse 

image f−1(�̃�) of every open subset �̃� ⊆ �̃� is an open subset of 𝑋. 

Powerset 
(Potenzmenge) 

The powerset 𝒫(𝑋) of any set 𝑋 is the set of all subsets of 𝑋, including the empty set Ø and 𝑋 itself. 

𝒫(𝑋) = {𝑆: 𝑆 ⊆ 𝑋}. Example: If 𝑋 = {𝑥, 𝑦, 𝑧} then 𝒫(𝑋) = {Ø, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}} 

Topology 
(Topologie) 

A family 𝒯 of subsets of a set 𝑋 is called topology on 𝑋 if it contains 𝑋 and the empty set Ø, as well as finite 
intersections and arbitrary unions of elements of 𝒯.  
In other words: Let 𝑋 be a set, and 𝒫(𝑋) a powerset. Then 𝒯⊆𝒫(𝑋) is called a Topology if  
(1) Ø ∈ 𝒯, 𝑋 ∈ 𝒯 (𝒯 contains 𝑋 and the empty set),  
(2) 𝒪1, 𝒪2, 𝒪3,… , 𝒪𝑛 ∈ 𝒯 ⟹ 𝒪1 ∩ 𝒪2 ∩ 𝒪3 ∩ …∩ 𝒪𝑛 ∈ 𝒯 (𝒯 contains every finite union of sets {𝒪𝑖: 𝑖 ∈ 𝐼})),  
(3) 𝒪𝑖 ∈ 𝒯 ∀𝑖 ∈ 𝐼 ⟹ ⋃ 𝒪𝑖𝑖∈𝐼 ∈ 𝒯 (𝒯 contains every arbitrary union of sets {𝒪𝑖: 𝑖 ∈ 𝐼}) 

Topological Space 
(Topologischer Raum) 

If 𝒯 is a topology on 𝑋, then the pair (𝑋,𝒯) is called a topological space. The notation 𝑋𝒯 may be used to 
denote a set 𝑋 endowed with the particular topology 𝒯. 

Continuous Function in 𝑋𝒯 
(Stetige Funktion in 𝑋𝒯) 

Let (𝑋, 𝒯) and (�̃�, �̃�) be topological spaces. A function f: 𝑋 → �̃� is called continuous if f−1(�̃�) ∈ 𝒯 for every 

�̃� ∈ �̃�. 

Homeomorphism 
(Homöomorphismus) 

A homeomorphism is a bijective map f such that both f and f−1 are continuous. In such case (𝑋, 𝒯) and 

(�̃�, �̃�) are called homeomorphic. 

Induced Topology 
(Teilraumtopologie) 

Informally, induced topology (or, Subspace Topology) is the natural structure a subspace of a topological 
space “inherits” from the topological space. More formally, given a topological space (𝑋, 𝒯𝑋) and a subset 
𝑆 ⊆ 𝑋, the induced topology (Subspace Topology) 𝒯𝑆 on 𝑆 is defined by 𝒯𝑆 ≝ {𝒪 ∩ 𝑆: 𝒪 ∈ 𝒯𝑋}  

Basis of a Topology 
(Topologische Basis) 

A Basis (or Base) ℬ for a topological space 𝑋 with topology 𝒯 is a collection of open sets in 𝒯 such that every 
open set 𝒪𝑖 in 𝒯 can be written as a union of elements of ℬ. We say that the base generates the topology 𝒯.  
Hence, a basis of topology 𝓣 is a subset ℬ of 𝒯 such that any 𝒪 ∈ 𝒯 can be written as 𝒪 = {⋃ 𝒪𝑖𝑖∈𝐼 : 𝒪𝑖 ∈ ℬ} 
Remark: Bases are useful because many properties of topologies can be reduced to statements about a base 
generating that topology. Examples: (1) Discrete topology: 1-element sets are a basis.  
(2) Metric Topology: 𝜀-neighbourhoods are a basis: ℬ = {𝑈𝜀(𝑥) : 𝑥 ∈ 𝑋} 

Product Topology 
(Produkttopologie) 

Given the topological spaces (𝑋, 𝒯𝑋) and (𝑌, 𝒯𝑌), we define (𝑋 × 𝑌, 𝒯𝑋×𝑌) by taking 
ℬ = {𝒪𝑋 × 𝒪𝑌: 𝒪𝑋 ∈ 𝒯𝑋, 𝒪𝑌 ∈ 𝒯𝑌} as a basis for the product topology 𝒯𝑋×𝑌. 
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Interior 
(Inneres, Innerer Kern) 

The interior 𝑀0 of a subset 𝑀 of a topological space 𝑋 consists of all points of 𝑀 that do not belong to the 
boundary of 𝑀. Thus, 𝑀0 is the union of all open sets contained in 𝑀: 𝑀0 = {⋃ 𝒪𝑖𝑖∈𝐼 : 𝒪𝑖 ∈ 𝒯, 𝒪𝑖 ⊆ 𝑀}  
The Interior 𝑀0 is defined to be the largest open set contained in 𝑀.  
Example: If 𝑀 is a ball in ℝ3 then the Interior 𝑀0 is all points satisfying the inequation 𝑥2 + 𝑦2 + 𝑧2 < 𝑟2 .  

Closure 
(Abschluss) 

The closure �̅� of a subset 𝑀 of a topological space 𝑋 consists of all points in 𝑀 together with all limit points 
of 𝑀. The closure of 𝑀 may equivalently be defined as the union of 𝑀 and its boundary, and also as the 
intersection of all closed sets containing 𝑀: 𝑀 = {⋂ 𝒞𝑖𝑖∈𝐼 : 𝒞𝑖 ⊇ 𝑀} 
Intuitively, the closure can be thought of as all the points that are either in 𝑀 or "near" 𝑀.  
Example: For 𝑥2 + 𝑦2 < 𝑟2 the closure is 𝑥2 + 𝑦2 ≤ 𝑟2 

Dense Subset 
(Dichte Teilmenge) 

A subset 𝑀 of a topological space 𝑋 is called Dense if every point 𝑥 in 𝑋 either belongs to 𝑀 or is a limit point 
of 𝑀. Informally, for every point in 𝑋, the point is either in 𝑀 or arbitrarily "close" to a member of 𝑀.  

𝑀 ⊂ 𝑋 is called dense in 𝑋, if and only if  𝑋 = 𝑀. Example: Every real number is either a rational number or 
has one arbitrarily close to it, hence ℚ is dense in ℝ . 

Boundary 
(“Rand”) 

A boundary 𝜕𝑀 of a subset 𝑀 of a topological space 𝑋 is the set of points in the closure of 𝑀, not belonging 
to the interior of 𝑀: 𝜕𝑀 = �̅�\𝑀0. Example: For 𝑥2 + 𝑦2 < 𝑟2 the boundary is 𝑥2 + 𝑦2 = 𝑟2 

Neighbourhood 
(“Umgebung”) 

Let (𝑋, 𝒯) be a topological space. For a point 𝑥 ∈ 𝑋 an open subset 𝒪 ∈ 𝒯 is called open neighbourhood of 𝑥 
if also 𝑥 ∈ 𝒪. A subset 𝑈 ∈ 𝑋 is called neighbourhood of 𝑥 ∈ 𝑋 if ∃ 𝒪 ∈ 𝒯: 𝑥 ∈ 𝒪 ⊆ 𝑈, thus if 𝑈 contains an 
open neighbourhood of 𝑥. Remark: 𝑆 ⊆ 𝑋 is open if and only if 𝑆 is a neighbourhood of each of its points. 

Haussdorff Space 
(“Haussdorff-Raum”) 

Intuitively, a Haussdorff Space is a topological space where all pairs of different points x and y can be 
separated by neighbourhoods. Formally: A Haussdorff Space is a topological space 𝑋 such that for any 
𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦 there are open sets 𝒪1 ∋ 𝑥, 𝒪2 ∋ 𝑦 so that 𝒪1 ∩ 𝒪2 = Ø. 
Remark: Almost all spaces encountered in analysis are Hausdorff; most importantly, ℝ is a Hausdorff space. 
More generally, all metric spaces are Hausdorff. 

Covering 
(“Abdeckung”) 

If 𝑋 is a topological space, then the covering 𝐶 of 𝑋 is a collection of subsets 𝑆𝑖 ⊆ 𝑋 whose union is the whole 
space 𝑋, thus 𝑋 = ⋃𝑆𝑖. 

Compact 
(“kompakt”) 

A topological space 𝑋 is called compact if, for every covering of 𝑋 by open sets, a finite number of these sets 
already constitute a covering. Examples: (1) A closed bounded interval is compact. (2) ℝ is compact. 
(3) An open interval is not compact. 

Locally Compact 
(“lokalkompakt”) 

If 𝑋 is a topological space, then X is called locally compact if every 𝑥 ∈ 𝑋 has a compact neighbourhood. 

Theorems about 
compactness 

 A compact subset 𝑆 ⊆ 𝑋 of a Hausdorff Space X is closed (“compact⟹closed”) 

 Closed subspaces and continuous images of compact spaces are compact 

 Metric spaces are compact if and only if every sequence contains a convergent subsequence 

 For subsets of ℝ𝑛: (compact)⟺(bounded and closed) 

 Finite unions of compact spaces are compact 

Compactification 
(“Kompaktifizierung”) 

Compactification of (𝑋, 𝒯) is a compact topological space (�̃�, �̃�) such that �̃� ⊇ 𝑋, and 𝑋 is dense in �̃�  

(�̅� = �̃�), and 𝒯 is the topology that is induced (with respect to the inclusion) on 𝑋  by �̃�. Example: (1) 
Compactification of the open ball is the closed ball. (2) Consider the real line ℝ with its ordinary topology. ℝ 
is not compact; in a sense, points can go off to infinity to the left or to the right. It is possible to compactify 
the real line ℝ by adding two points, +∞ and −∞; this results in the extended real line ℝ̅.  

Alexandroff Compactification, 
One-Point Compactification  
(“Alexandroff-
Kompaktifizierung,  
Ein-Punkt-
Kompatifizierung”) 

Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a 
way that the resulting space is compact. More precisely, let X be a topological space. Then the Alexandroff 

extension of 𝑋 is a certain compact space �̃� together with an open embedding 𝑐: 𝑋 → �̃� such that the 

complement of 𝑋 in �̃� consists of a single point, typically denoted 𝜔 or ∞. The map 𝑐 is a Hausdorff 
compactification if and only if 𝑋 is a locally compact, noncompact Hausdorff space. For such spaces the 
Alexandroff extension is called the one-point compactification or Alexandroff compactification. 

�̃� = 𝑋 ∪ {𝜔}, �̃� = 𝒯 ∪ {𝑆 ∪ {𝜔}: 𝑋\𝑆 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑖𝑛 𝑋} . Example: The 1-point compactification of ℝ𝑛 is 
homeomorpic to the n-dimensional sphere 𝑆𝑛 ⊂ ℝ𝑛. 

Equivalence relation 
(“Äquivalenzrelation”) 

An equivalence relation ∼ over a set 𝑋 is a binary relation that is at the same time a reflexive relation, a 
symmetric relation and a transitive relation: 
(1) 𝑥 ∼ 𝑥 (reflexivity), 
(2) 𝑥 ∼ 𝑦 ⟺ 𝑦 ∼ 𝑥 (symmetry), and 
(3) 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ⟹ 𝑥 ∼ 𝑧 (transitivity) 

Quotient Space 
(“Quotiententopologie”) 

Let (𝑋, 𝒯𝑋) be a topological space, and let ~ be an equivalence relation on 𝑋. The quotient space, 𝑌 = 𝑋/~ is 

defined to be the set of equivalence classes of elements of 𝑋: 𝑌 = {[𝑥]: 𝑥 ∈ 𝑋} = {{𝑣 ∈ 𝑋: 𝑣~𝑥}: 𝑥 ∈ 𝑋} 

equipped with the topology 𝒯𝑌 where the open sets are defined to be those sets of equivalence classes 
whose unions are open sets in 𝑋. 
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Real Projective Space ℝℙ𝑛 
(“Reell-Projektiver Raum”)  

The Real Projective Space ℝℙ𝒏 of dimension n is the topological space of lines passing through the origin 0⃗  in 
ℝ𝑛+1. It is a compact, smooth manifold of dimension 𝑛. As with all projective spaces, ℝℙ𝒏 is formed by taking 

the quotient of ℝ𝒏+𝟏\{0⃗ } under the equivalence relation 𝑥 ∼  𝜆𝑥 for all real numbers 𝜆 ≠  0. For all 𝑥 in 

ℝ𝒏+𝟏\{0⃗ } one can always find a 𝜆 such that 𝜆𝑥 has norm 1. There are precisely two such 𝜆 differing by sign. 

- Definition of the equivalence relation in ℝ𝒏+𝟏\{0⃗ } by (𝑥0, 𝑥1, … , 𝑥𝑛) ∼ (𝜆𝑥0, 𝜆𝑥1, … , 𝜆𝑥𝑛) for 𝜆 ∈ ℝ\{0}.  

So, under this definition 𝑥 ~𝑦 ⟺ ∃𝜆 ≠ 0: 𝑥 = 𝜆𝑦 .  This means: If the coordinates of a point are multiplied 
by a non-zero scalar then the resulting coordinates represent the same point (“homogeneous 
coordinates”, see next point).  

- ℝℙ𝑛 is the set of equivalence classes under ~ denoted by (𝑥0: 𝑥1: … : 𝑥𝑛) (homogeneuous coordinates) 
- Every class has precisely two representatives with 𝑥0

2 + 𝑥1
2 +⋯+ 𝑥𝑛

2 = 1 
- In every 𝑈𝑖 ⊆ ℝℙ

𝑛, determined by 𝑥𝑖 ≠ 0, one can choose a unique representative by 
(𝑥0, 𝑥1, … , 𝑥𝑖−1, 1, 𝑥𝑖+1, … ) ⟹ 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑈𝑖 ⟷ℝ𝑛. In other words: The set 𝑈𝑖 that can be represented by 
homogeneous coordinates with 𝑥𝑖 = 1 for some 𝑖 ≥ 0 form a subspace that be identified withℝ𝑛.  

- As an example, take ℝ3. In homogeneous coordinates, any point (𝑥: 𝑦: 𝑧) with 𝑧 ≠ 0 is equivalent to 
(𝑥/𝑧: 𝑦/𝑧: 1). So there are two disjoint subsets of the projective plane: that consisting of the points 
(𝑥: 𝑦: 𝑧) =(𝑥/𝑧: 𝑦/𝑧: 1) for 𝑧 ≠ 0, and that consisting of the remaining points (𝑥: 𝑦: 0). The latter set can 
be subdivided similarly into two disjoint subsets, with points (𝑥/𝑧: 1: 0) and (𝑥: 0: 0). This last point is 
equivalent to (1: 0: 0). 

- This shows that ℝℙ𝑛 can be covered by 𝑛 + 1 coordinate patches 𝑈𝑖 that are isomorphic to ℝ𝑛. 
- Each patch ℝℙ𝑛\𝑈𝑖 is isomorphic to ℝℙ𝑛−1:  ℝℙ𝑛\𝑈𝑖 = {(𝑥0, 𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛)} ⟷ ℝℙ𝑛−1 
- Projective space ℝℙ𝑛 is therefore a disjoint union ℝℙ𝑛 = ℝ𝑛 ∪ ℝ𝑛−1 ∪…∪ℝ1 ∪ ℝ0 (where ℝ0 is a single 

point) 

Disconnected  
(“unzusammenhängend”) 

A topological space (𝑋,𝒯) is called disconnected if it is the union of two disjoint nonempty open sets. More 
formally, X is disconnected, if  𝑋 = 𝒪1 ∪ 𝒪2 for some open sets 𝒪1 ≠ Ø and 𝒪2 ≠ Ø with 𝒪1 ∩ 𝒪2 = Ø. 
Remark: obviously 𝒪1 = 𝑋\𝒪2 and 𝒪2 = 𝑋\𝒪1. These are also closed, so we could have made this definition 
also with closed set. 

Connected 
(“zusammenhängend”) 

A topological space (𝑋,𝒯) is called connected if it is not disconnected. 

Path 
(“Weg”) 

A path in a topological space (𝑋, 𝒯) is a continuous map (i.e. function) 𝑓 from the unit interval 𝐼 = [0,1] to 𝑋: 
More formally: Let (𝑋, 𝒯) be a toplogical space. Path 𝑓 = {𝑓: [0,1] ⟼ 𝑋: 𝑎, 𝑏 ∈ 𝑋, f(0) = 𝑎, f(1) = 𝑏 } 

Pathwise Connected 
(“wegzusammenhänged”) 

A topological space (𝑋,𝒯) is pathwise connected if for any two points 𝑎 ∈ 𝑋,  𝑏 ∈ 𝑋 there exists a path from 
a to b: ∀𝑎, 𝑏 ∈ 𝑋 ∃𝑓: [0,1] → 𝑋: 𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠, f(0) = 𝑎, f(1) = 𝑏. 
𝑝𝑎𝑡ℎ𝑤𝑖𝑠𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 ⟹  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 (but not the other way!) Counterexample (connectd, but not pathwise 

connected): Consider the graph 𝐴 of 𝑦 = sin (
1

𝑥
)  𝑜𝑣𝑒𝑟 ℝ+ (subset of ℝ2 under open topology of ℝ2) with 

closure 𝐴 = 𝐴 ∪ ({0} × [−1,1]). 𝐴 is connected, but there is no path from the boundary 𝐴 ∩ 𝐴 𝑡𝑜 𝐴 

Loop 
(“Schleife”) 

A loop in a topological space 𝑋 is a continuous function 𝑓 from the unit interval 𝐼 = [0,1] → 𝑋 such that 
f(0) = f(1). In other words, it is a path whose initial point is equal to the terminal point. 

Invariance of connected 
components under 
homeomorphism 

The number of connected components is invariant under homeomorphism (i.e. under a bijective map f such 
that both f and f−1 are continuous). Connectedness is therefore a topological invariant, i.e. a property that is 
invariant under homeomorphisms. 

Homotopy 
(“Homotopie”) 

Two continuous maps 𝑓:𝑋 → 𝑌, 𝑔: 𝑋 → 𝑌 are homotopic if there exists a continuous (meta-)map (a “map of 
maps”) 𝐹:𝑋 × [0,1] → 𝑌 with Euclidean product topology 𝐹(𝑥, 0) = f(𝑥) , 𝐹(𝑥, 1) = g(𝑥) ∀𝑥 ∈ 𝑋. 
Homotopy is an equivalence relation.  

Group 
(“Gruppe”) 
 

Informally, a group captures the essence of symmetry. The collection of symmetries of any object is a group, 
and every group is the symmetries of some object. 
Formally, a group is a set, 𝐺, together with an operation • (called the group law of 𝐺) that combines any two 
elements 𝑎 and 𝑏 to form another element, denoted 𝑎 • 𝑏 or ab. To qualify as a group, the set and operation, 
(𝐺,•) must satisfy four requirements known as the group axioms:  
(1) For all 𝑎, 𝑏 ∈ 𝐺, the result of the operation, 𝑎 • 𝑏, is also in G (closure), 
(2) for all 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 • 𝑏) • 𝑐 = 𝑎 • (𝑏 • 𝑐) (associativity), 
(3) there exists an unique element 𝑒 ∈ 𝐺 such that, ∀𝑎 ∈ 𝐺: 𝑒 • 𝑎 = 𝑎 • 𝑒 (identity element), and 
(4) for each 𝑎 ∈ 𝐺, there exists an element 𝑏 ∈ 𝐺, such that 𝑎 • 𝑏 =  𝑏 • 𝑎 = 𝑒, (associativity). 
Example: Set of integers ℤ. (1) For any two integers 𝑎, 𝑏 ∈ ℤ, the sum (𝑎 + 𝑏) is also integer (2) for all 
integers 𝑎, 𝑏, 𝑐 ∈ ℤ:  (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) is true; (3) if 𝑎 ∈ ℤ, then 0 + 𝑎 = 𝑎 +  0 =  𝑎 (with 0 being 
the identity element); and (4) for every integer 𝑎, there is an integer 𝑏 such that 𝑎 + 𝑏 = 𝑏 + 𝑎 = 0. The 
integer 𝑏 is called the inverse element of the integer a. 

Abelian Group 
(“Abelsche Gruppe”) 

An Abelian Group 𝐴 is a group that in addition to the four group axioms also satisfies commutativity:  
∀𝑎, 𝑏 ∈ 𝐴: 𝑎 • 𝑏 =  𝑏 • 𝑎. Example: Set of integers ℤ with the operation addition "+". 

Fundamental Group 𝜋1 
(“Fundamentalgruppe 𝜋1”) 

The fundamental group π1(𝑌) is the set of all homotopic classes 𝑓 from a circle to 𝑌.  
Group structure: Every 𝑓: 𝑆1 → 𝑌 corresponds to a closed path f(0) = f(1) = 𝑥0.  
Unit element: 𝑓 = 𝑥0 = 𝑐𝑜𝑛𝑠𝑡.  

Composition: f ∘ g(𝑡) = {
f(2𝑡 − 1)… 𝑡 ≥

1

2

𝑔(2𝑡)      … 𝑡 <
1

2
 
  (𝑓 and 𝑔 start and end at 𝑥0) 

Inverse: f−1(𝑡) = f(1 − 𝑡). 
The group structure is independent of 𝑥0 if 𝑌 is pathwise connected. 

Theorem about π1(𝑌 × �̃�) Let 𝑌 and �̃� be topological spaces. Then the fundamental group of their product space π1(𝑌 × �̃�) = π1(𝑌)⊕

π1(�̃�) where the direct product ‘⊕’ is defined by 𝐺⨁�̃� = {(𝑔, �̃�): 𝑔 ∈ 𝐺, �̃� ∈ �̃�} with the group structure 
(𝑔1, �̃�1)(𝑔2, �̃�2) = (𝑔1𝑔2, �̃�1�̃�2). 
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Simply Connected Let 𝑌 be a topological space. 𝑌 is called simply connected if it is pathwise connected and its fundamental 
group π1(𝑌) = 𝑒, with 𝑒 being the unit element. 

Covering Space 
(“Überlagerung”) 

(�̃�, �̃�) is called a covering space of (𝑋, 𝒯) if there exists a continuous surjective map 𝜋: �̃� → 𝑋 such that 

every 𝑥 ∈ 𝑋 has a neighbourhood U(𝑥) such that 𝜋 is a homeomorphism from �̃� to U(𝑥) for every connected 

component �̃� of π−1 U(𝑥). Loosely speaking, �̃� locally looks like 𝑋. 

Universal Cover 
(Universelle Überlagerung) 

�̃� is called the universal cover if π1(�̃�) is trivial, i.e. if it exists and is unique up to a homeomorphism for well-

behaved spaces.) The universal cover (of the space 𝑋) covers any connected cover (of the space 𝑋). 
𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑐𝑜𝑣𝑒𝑟 =
{𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑓 𝑚𝑎𝑝𝑠: f[0: 1] → 𝑋 ∶  f(0) = 𝑥0, f ∼ g 𝑖𝑓 f(1) =
g(1)  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 fg−1 𝑖𝑠 𝑡𝑟𝑖𝑣𝑖𝑎𝑙}  

  Manifolds and Homology (Mannigfaltigkeit und Homologie) 

Manifold 
(“Mannigfaltigkeit”) 

A manifold 𝑀 is a topological space that locally resembles Euclidean space near each point. More precisely, 
each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space 
of dimension n. Examples: One-dimensional manifolds include lines and circles, but not figure eights (because 
they have crossing points that are not locally homeomorphic to Euclidean 1-space). Two-dimensional 
manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, but also the Klein 
bottle and real projective plane. 

Differentiable 𝐶𝑟 Manifold 
(Diff.bare Mannigfaltigkeit) 

A n-dimensional differentiable 𝑪𝒓-manifold 𝑀 (where 𝑟 stands for r times differentiable) is a Haussdorf 
space with a 𝐶𝑟 atlas (where 𝑟 = {∞, 0, 1, 2, … }.  

𝐶𝑟 Atlas 
(“𝐶𝑟 Atlas”) 

A 𝑪𝒓 atlas is a set of charts (𝑈𝑖 , 𝑥(𝑖)) where 𝑈𝑖 are open subsets of 𝑀and the 𝑥(𝑖) are condinous invertible (i.e. 

homeomorphic) maps of 𝑈𝑖 to open subsets of ℝ𝑛 such that  
(1) all of 𝑀 is covered by all 𝑈𝑖: 𝑀 = ⋃ 𝑈𝑖𝑖 , 𝑖 ∈ 𝐼, and 

(2) 𝑈𝑖 ∩ 𝑈𝑗 ≠ Ø⟹ 𝑥(𝑖), 𝑥(𝑗)
−1 is 𝑟 times continuously differentiable on 𝑥(𝑗)(𝑈𝑖 ∩ 𝑈𝑗) 

Compatible atlases Two compatible atlases (i.e. atlases witch charts obeying condition (2)) are understood to define the same 
manifold. 

Analytic Manifold 
(Analytische Mannigfaltigk.) 

Analytic manifolds (𝐶𝑟 replaced by ‘analytic’) are smooth manifolds with the additional condition that the 
transition maps are analytic (they can be expressed as power series). 

Orientable Manifold 
(“Orientierbare Mannigf.”) 

Let 𝑀 be a differentiable manifold. 𝑀 is orientable if there exists an atlas {(𝑈𝑖 , 𝑥(𝑖))} such that the Jacobian 

determinant det (
𝜕(𝑥(𝑖)

1 ,…,𝑥(𝑖)
𝑛 )

𝜕(𝑥(𝑗)
1 ,…,𝑥(𝑗)

𝑛 )
) (where 𝑥(𝑖)

𝑛  denotes the 𝑛𝑡ℎ variable an 𝑖 the 𝑖𝑡ℎ coordinate in ℝ𝑛) is positive 

for all non-empty 𝑈𝑖 ∩ 𝑈𝑗.  

Paracompact 
(“parakompakt”) 

A manifold 𝑀 is paracompact if for every atlas {(𝑈𝑖 , 𝑥(𝑖))} there exists an atlas {(𝑉𝑖 , 𝑦(𝑖))} with neighborhood 

𝑉𝑗 ⊂ 𝑈𝑖 for some 𝑖, such that every point in 𝑀 has a neighborhood intersecting only finitely many 𝑉𝑗.  

Diffeomorphic 
(“diffeomorph”) 

The manifold 𝑀 and 𝑀′ (speak: “M prime”) are called diffeomorphic if ∃𝑓:𝑀 → 𝑀′ such that 𝑥′𝑓𝑥−1 is 𝐶𝑟 an 
invertible (with inverse also 𝐶𝑟) wherever it is defined with respect to charts (𝑈, 𝑥), (𝑈′, 𝑥′) respectively. 

Lie Group 
(“Lie Gruppe”) 

Informally, a Lie Group is a group of symmetries where the symmetries are continuous. A circle has a 
continuous group of symmetries: you can rotate the circle an arbitrarily small amount and it looks the same. 
Formally, a Lie Group G is a (finite dimensional smooth) differentiable manifold that is at the same time a 
group such that the group multiplication 𝑓: 𝐺 × 𝐺 → 𝐺 with f(𝑥, 𝑦) = 𝑥𝑦−1 is differentiable. 

Group Action 
(“Gruppenoperation”) 

Informally, a group action is a way of interpreting the manner in which the elements of the group correspond 
to transformations of some space in a way that preserves the structure of that space. 
Formally, a group action on a manifold is a differentiable map 𝜎: 𝐺 ×𝑀 → 𝑀 such that  𝜎𝑔 ∘ 𝜎ℎ = 𝜎𝑔ℎ (left 

group action 𝑔ℎ𝑥), or 𝜎ℎ ∘ 𝜎𝑔 = 𝜎ℎ𝑔 (right group action 𝑥ℎ𝑔), where σ𝑔(𝑥) = σ(𝑔, 𝑥) 

Effective Group Action 
(“effektive Operation”) 

Informally, a group action is effective if every element, except for the unit element, does something. 
Formally, a group action is effective if only the identity element 𝑒 acts trivially: σ𝑔(𝑥) = 𝑥 ∀𝑥 ∈ 𝑀 ⟹ 𝑔 = 𝑒. 

Example: 𝑀 = ℝ𝑛 , 𝐺 = 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠. 

Free Group Action 
(“freie Operation”) 

A group action is free if only σ𝑒 has fixed points: σ𝑔(𝑥) ≠ 𝑥 ∀𝑥 ∈ 𝑀, 𝑔 ∈ 𝐺\{𝑒} 

Transitive Group Action 
(“transitive Operation”) 

A group action is transitive if “all points can be moved”: ∀𝑥, 𝑦 ∈ 𝑀∃𝑔 ∈ 𝐺: 𝑦 = σ𝑔(𝑥) 

Isotropy Group 
(“Isotropiegruppe”) 

The isotropy group (also called little group or stabilizer) of a point 𝑥 ∈ 𝑀 is the subgroup 

H(𝑥) = {𝑔 ∈ 𝐺: σ𝑔(𝑥) = 𝑥} of 𝐺 consisting of all the group elements that have 𝑥 as a fixed point. 

Classical Lie Groups 
(“Klassische Lie-Gruppen”) 

Classical Lie Groups can be represented by matrices. Consider a vector space 𝑉 ≅ 𝔽𝑛 (where ≅ means 
‘isomorphic’ and 𝔽𝑛 is a field (“Körper”), typically ℝ𝑛 or ℂ𝑛). Given a basis of 𝑉, any 𝑓 ∈ Aut(𝑉) is 
represented by an invertible matrix 𝑀 ∈ GL(𝑛, 𝔽) (where Aut(𝑉) is an automorphism and GL stands for 
“general linear”) 

 SL(𝑛, 𝔽): Group of matrices with determinant 1 

 SO(𝑛, 𝔽): Group of orthogonal matrices with det=1. Orthogonal matrices leave the metric 𝑔𝑚𝑛 = 𝛿𝑚𝑛 of 
the Euclidean space invariant. 

 Sp(2𝑛, 𝔽): Group of 2𝑛 × 2𝑛-matrices that leave the n-fold tensor product invariant. 
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Simplicial Homology (“Simpliziale Homologie”) 
Simplicial Homology 
(“Simpliziale Homologie”) 

Simplicial homology formalizes the idea of the number of holes of a given dimension in a simplicial complex. 
It provides a way to study topological spaces whose building blocks are n-simplices. By definition, such a 
space is homeomorphic to a simplicial complex by a triangulation of the given space. 

Orientation 
(“Orientierung”) 

An orientation of a 𝑘-simplex is given by an ordering of the vertices, written as (𝑣0, … , 𝑣𝑘), with the rule that 
two orderings define the same orientation if and only if they differ by an even permutation. 

Affine Space 
(“Affiner Raum”) 

Affine space is a geometric structure that generalizes the properties of Euclidean spaces in such a way that 
these are independent of the concepts of distance and measure of angles, keeping only the properties 
related to parallelism and ratio of lengths for parallel line segments. 

Barycentric Coordinates 
(“Baryzentr. Koordinaten”) 

Let 𝑝 1, … , 𝑝 𝑛  be the vertices (“Eckpunkte”) of a simplex in an affine space 𝐴. The vertices themselves have the 
coordinates 𝑝 1 = {1,0,0, . . ,0}, 𝑝 2 = {0,1,0, . . ,0},… , 𝑝 𝑛 = {0,0,0, . . ,1}.  If, for some point 𝑥  in 𝐴, (𝑐1 +⋯+
𝑐𝑛)𝑥 = 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 and at least one of 𝑐1…𝑐𝑛 does not vanish then the coefficients 𝑐1…𝑐𝑛 are 
barycentric coordinates of 𝑥  with respect to 𝑝1, … , 𝑝𝑛. Often the values of coordinates are restricted with a 
condition ∑𝑐𝑖 = 1, which makes them unique. Such coordinates are called absolute barycentric coordinates. 

Convex Hull 
(“Konvexe Hülle”) 

The convex hull Conv(𝑝 0, 𝑝 1, … , 𝑝 𝑘) of a set 𝑋 of points (𝑝 0, 𝑝 1, … , 𝑝 𝑘) in an Euclidean space (or, more 
generally, in an affine space over the reals) is the smallest convex set that contains 𝑋. For instance, when 𝑋 is 
a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band 
stretched around 𝑋. 

Simplex 
(“Simplex”) 

A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. Simplex 

𝜎: (𝑝 0, 𝑝 1, … , 𝑝 𝑘) ≝ {𝑥 ∈ ℝ𝑛: 𝑥 = ∑ 𝑐𝑖𝑝 𝑖
𝑘
𝑖=0 , 𝑐𝑖 ≥ 0,∑ 𝑐𝑖

𝑘
𝑖=0 = 0} = Conv(𝑝 0, 𝑝 1, … , 𝑝 𝑘). If 𝜎 lies in a k-

dimensional subspace of ℝ𝑛 → dim(𝑘) 

Oriented simplex 𝜎: (𝑝0, … , 𝑝𝑟) is oriented if  (𝑝0,… , 𝑝𝑟) = (−1)
𝜋(𝑝𝜋(0), … , 𝑝𝜋(𝑟)) for 𝜋 being a permutation of {0,… , 𝑟} 

Face The convex hull 𝜌 = Conv(𝑆) : 𝑆 ⊆ {𝑝 0, 𝑝 1,… , 𝑝 𝑘} of any 𝑚 points of an 𝑘-simplex is also a simplex, called an 
𝒎-face. The 0-faces (dim(𝜌) = 0) are called the vertices (“Eckpunkte”), the  1-faces (dim(𝜌) = 1) are called 
the edges (“Kanten”), the (𝑘 − 1)-faces (dim(𝜌) = 𝑘 − 1) are called the facets (“Facetten”), and the sole 𝑘-
face is the whole 𝑛-simplex itself. All 𝑚-faces with 𝑚 < 𝑘 are called proper faces. The empty set and the sole 
𝑘-face are called improper faces. 

Simplicial Complex 
“Simplizialkomplex” 

A simplicial complex 𝑲 is a finite set 𝐾 of simplices in ℝ𝑛 such that: 

 𝜎 ∈ 𝐾 (“every face of 𝜎 is in 𝐾”) 

 𝜎𝑖 , 𝜎𝑗 ∈ 𝐾 ⟹ 𝜎𝑖 ∩ 𝜎𝑗 = Ø ∨ 𝜎𝑖 ∩ 𝜎𝑗  is a face of both 𝜎𝑖  and 𝜎𝑗 .  

Polyhedron of simplicial 
complex 𝐾 

A polyhedron of a simplicial complex 𝑲 is defined as ⋃ 𝜎𝑖𝜎𝑖∈𝐾
 

Triangulation 
(“Triangulierung”) 

A triangulation of a topological space 𝑋 is a simplicial complex 𝐾, homeomorphic to 𝑋, together with a 
homeomorphism ℎ ∶  𝐾 →  𝑋. A topological space is trianguable if it is homeomorphic to a polyhedron of 
some simplicial complex. This is true for differentiable manifolds in 2D and 3D, but generally not for 4D. 

Simplicial r-chain 
(“simpliziale r-Kette”) 

A simplicial r-chain is a finite sum ∑ 𝑐𝑖𝜎𝑖
𝑁
𝑖=1  where each 𝑐𝑖 is an integer and 𝜎𝑖  is an oriented 𝑘-simplex: 

{∑ 𝑐𝑖𝜎𝑖
𝑁
𝑖=1 : 𝑐𝑖 ∈ ℤ, 𝜎𝑖 ∈ 𝐾, dim(𝜎𝑖) = 𝑟} 

r-Chain Group 
 

The r-chain group C𝑟(𝑘) is the abelian group freely generated by the r-simplices {∑ 𝑐𝑖𝜎𝑖
𝑁
𝑖=1 : 𝑐𝑖 ∈ ℤ, 𝜎𝑖 ∈

𝐾, dim(𝜎𝑖) = 𝑟} 

Boundary Operator 
(“Randabbildung”) 

Let 𝜎: (𝑝0, … , 𝑝𝑟) be an oriented 𝑟-simplex. The boundary operator 𝜕𝑟: 𝐶𝑟 → 𝐶𝑟−1 is the homomorphism 
defined by 𝜕𝑟(𝜎) = ∑ (−1)𝑖(𝑝0, … , �̂�𝑖 , … , 𝑝𝑟  )

𝑟
𝑖=0  where (𝑝0, … , �̂�𝑖 , … , 𝑝𝑟  ) is the ith face of  𝜎, obtained by 

deleting its ith vertex. 𝜕𝑟−1(𝜕𝑟(𝜎)) = 𝜕𝑟−1 ∘ 𝜕𝑟 = 0. 

Cycle Group The cycle group 𝑍𝑟 = ker(𝜕𝑟) 

Boundary Group The boundary group 𝐵𝑟−1 = im(𝜕𝑟); 𝜕𝑟−1 ∘ 𝜕𝑟 = 0 ⟹ 𝐵𝑟 ⊆ 𝑍𝑟  

Simplicial Homology Group The simplicial homology groups H𝑟(𝐾) of a simplicial complex 𝐾 are defined using the simplicial chain 
complex C(𝐾), with C𝑟(𝐾) the free abelian group generated by the 𝑟-simplices of 𝐾: H𝑟(𝐾) = Z𝑟(𝐾) /
B𝑟(𝐾). The most general form of H𝑟(𝐾)  𝑖𝑠 H𝑟(𝐾) ≅ ℤ⨁…⨁ℤ⏟      

𝑓

⊕ℤ𝑘1⊕…⊕ℤ𝑘𝑝⏟          
𝑝

.  

The first 𝑓 factors form a free Abelian group of rank𝑓 and the next 𝑝 factors are called the torsion subgroup 
of H𝑟(𝐾) . 

Betti Numbers 
(“Betti-Zahlen”) 

Informally, the 𝑟𝑡ℎ Betti Number refers to the number of 𝑟-dimensional holes on a topological surface. The 
first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional 
simplicial complexes: 𝑏0 is the number of connected components, 𝑏1 is the number of one-dimensional or 
"circular" holes, 𝑏2 is the number of two-dimensional "voids" or "cavities". Formally, The 𝑟𝑡ℎ Betti number 
represents the rank of the 𝑟𝑡ℎ homology group, denoted 𝐻𝑟: 𝑏𝑟 = dim𝐻𝑟(𝐾,ℝ). 

Euler Characteristic The Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant. It is a 
number that describes a topological space's shape or structure regardless of the way it is bent. This means 
that any two surfaces that are homeomorphic must have the same Euler characteristic. The Euler 
characteristic 𝜒 was classically defined for the surfaces of polyhedra, according to the formula 𝜒 = 𝑉 − 𝐸 +
𝐹 where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given 
polyhedron. For example, for a Tetrahedron 𝜒 = 𝑉 − 𝐸 + 𝐹 = 4 − 6 + 4 = 2. 
Similar, for a simplicial complex, the Euler characteristic equals the alternating sum 𝜒 = 𝐼0 − 𝐼1 + 𝐼2 −⋯ 
where 𝐼𝑟  is the number of r-simplices in k. Hence, 𝜒(𝐾) = ∑ (−1)𝑟𝐼𝑟

𝑛
𝑟=0 = ∑ (−1)𝑟𝑏𝑟

𝑛
𝑟=0   

Connected Sum 
(“Verbundene Summe”) 

A connected sum of two m-dimensional manifolds is a manifold formed by deleting an open ball from each 
manifold and gluing together the resulting boundary spheres. Let 𝑀1 and 𝑀2  be two smooth manifolds of 
equal dimension 𝑛. Then the connected sum is denoted 𝑀1#𝑀2.  

Euler Characteristic of 
connected sums 

Let 𝑀1 and 𝑀2  be two smooth manifolds of equal dimension 𝑛. Then the euler characteristic of the 
connected sum  𝜒(𝑀1#𝑀2) = 𝜒(𝑀1) + 𝜒(𝑀2) − 𝜒(𝑆

𝑛). 
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Connected manifolds Examples: (1) 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 ≅ 𝑆1 × ℝ, (2) 𝑀ö𝑏𝑖𝑢𝑠 𝑆𝑡𝑟𝑖𝑝 ≅ 𝑆1 ×̃ ℝ (with ×̃ being the twisted product). The 
Möbius strip is non-orientable and has only one boundary component. (3) Torus 𝑇2 ≅ 𝑆1 × 𝑆1 

Homology for Sub-Manifolds (“Homologie von Untermannigfaltigkeiten”) 
Sub-Manifold 
(“Untermannigfaltigkeit”) 

Given the manifolds 𝑀 and 𝑁 and an injective map f:𝑀 → 𝑁. If f(𝑀) is diffeomorphic to M then f(𝑀) is a 
sub-manifold of 𝑁.  

Manifold with Boundary 
(“Berandete Mannikfalt.”) 

A manifold with boundary is defined like an ordinary manifold, but allowing charts in ℝ+
𝑛 ≝ ℝ∩ {𝑥 ≥ 0}. 

Signs of such manifolds are derived from some suitable triangulation. The definition of chains, boundaries, 
boundary operators on chains and betti-numbers remain unchanged. 

Homologous Manifolds 
(“Homologe Mannigf.”)) 

Two manifolds are homologous if their difference is a boundary. 

Intersection Assuming a Manifold 𝑀 is oriented, chains 𝜌𝑘 , 𝜌𝑛−𝑘 intersect traversely at 𝑝 ∈ 𝑀 if  

det (
𝜕(𝜌1,…,𝜌𝑘,𝑡1,…,𝑡𝑛−𝑘)

𝜕(𝑥1,…,𝑥𝑛)
) ≠ 0 for ρ𝑥(𝑡) oriented parametrizations of 𝜌𝑘 , 𝜌𝑛−𝑘 ,𝑀. 

Intersection number 
(“Schnittzahl”) 

(𝜌𝐾 ∘ 𝜌𝑁−𝐾)
# = ∑ sign(

𝜕(𝜌,𝑡)

𝜕(𝑥)
)𝑝∈𝜌𝑘∩𝜌𝑛−𝑘

. Depends only on the homology class.  

Poincaré Duality 
(“Poincaré Dualität”) 

Any linear functional 𝐻𝑛−𝑘 → ℤ can be expressed as intersection with some 𝜌𝑘 ∈ 𝐻𝐾. 
(𝜌𝑛−𝑘 ∘ 𝜌𝑙)
# = 0∀𝜌𝑘 ∈ 𝐻𝑙 ⟹ 𝜌𝑛−𝑘 is a torsion class.  

Genus 
(“Geschlecht”) 

Every compact connected surface is of the form 𝑇2
#𝑔

, 𝑔 = {0,1,2,… }: 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑏𝑙𝑒, 𝑔 = 𝑔𝑒𝑛𝑢𝑠 . The genus g 

of a closed orientable surface is the “number of handles”, or (equally) the “number of holes”. The euler 
characteristics of a closed orientable surface calculates as 𝜒 = 2 − 2𝑔.  The genus k of a closed non-
orientable surface is the number of real projective planes in a connected sum decomposition of the surface. 
The Euler characteristic can be calculated as 𝜒 = 2 − 𝑘. 

Crosscap 
(“Kreuzhaube”) 

The crosscap can be thought of as the object produced by removing a small open disc in a surface and then 
identifying opposite sides. That is equivalent to gluing a möbius strip into the hole and taking the connected 
sum with ℝℙ2 

Attaching a handle 
(“Henkel ankleben”) 

Cut out two discs, identify boundaries. The Euler characteristic of the surface resulting from 𝑆2 by attaching ℎ 
handles and 𝑐 crosscaps has 𝜒 = 2 − 2ℎ − 𝑐. 

Differential Aspects of Manifolds (“Differentialaspekte von Mannigfaltigkeiten”) 
Tangent Space 
(“Tangentialraum”) 

Informal description: To every point 𝑝 of a differentiable manifold a tangent space can be attached. The 
tangent space is a real vector space that intuitively contains the possible directions in which one can 
tangentially pass point 𝑝. The elements of the tangent space at 𝑝 are called the tangent vectors 𝑣𝑝 at 𝑝.  

More formally, the tangent space T𝑝(𝑀) of the differentiable manifold 𝑀 (with 𝑝 ∈ 𝑀) is the linear span 

(“lineare Hülle”) of the operators 
𝜕

𝜕𝑥𝑖
|
𝑝

acting on functions that are differentiable in the neighborhood of 𝑝. 

𝑣𝑝 = 𝑣𝑝
𝑖 𝜕

𝜕𝑥𝑖
 acts via 𝑣𝑝𝑓 = 𝑣𝑝

𝑖 𝜕f

𝜕𝑥𝑖
 (summation convention). 

Remark: Given a curve 𝐶: 𝑥𝑖 = 𝑥𝑖(𝑡), then 
𝜕f

𝜕𝑡
=

𝜕f

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑡
 is the “direction of 𝐶 at point 𝑝” with 

𝜕𝑥𝑖

𝜕𝑡
 being the 

velocity. 

Tangents Space is a vector 
space 

As 𝑣𝑝(𝛼𝑓 + 𝛽𝑔) = 𝛼𝑣𝑝𝑓 + 𝛽𝑣𝑝𝑔 and 𝑣𝑝(𝑓𝑔) = (�̂�𝑝𝑓)𝑔 + 𝑓(�̂�𝑝𝑔), tangent space is also a vector space. 

Coordinate Transformation 
(“Koordinatentransform.”) 

To simplify notation: 𝑣𝑝
𝑖 ≝ 𝑣𝑖. Then 𝑣 = 𝑣𝑖

𝜕

𝜕𝑥𝑖
= 𝑣𝑖

𝜕�̃�𝑗

𝜕𝑥𝑖

𝜕

𝜕�̃�𝑗
⟹ �̃�𝑗 =

𝜕�̃�𝑗

𝜕𝑥𝑖
𝑣𝑖  

Cotangent Space 
(“Kotangentialraum”) 

The cotangent space T𝑝
∗(𝑀) is the dual space Hom(T𝑝(𝑀) , ℝ), dual to T𝑝(𝑀) (Hom being the space of linear 

maps). The basis dual to {
𝜕

𝜕𝑥𝑖
} is denoted by {𝑑𝑥𝑜𝑖}. 〈𝑑𝑥𝑖 ,

𝜕

𝜕𝑥𝑗
〉 = 𝛿𝑖𝑗. Cotangent vector: �̂� = 𝑢𝑗 𝑑𝑥

𝑗 = �̃�𝑖 𝑑�̃�
𝑖 

⟹ �̃�𝑘 =
𝜕𝑥𝑗

𝜕�̃�𝑘
𝑢𝑗 

Tensor A tensor T of type (𝑘, 𝑙) is a map 𝑇: 𝑇𝑝
∗ ×…× 𝑇𝑝

∗
⏟        

𝑘 𝑡𝑖𝑚𝑒𝑠

× 𝑇𝑝 ×…× 𝑇𝑝⏟      
𝑙 𝑡𝑖𝑚𝑒𝑠

→ ℝ that is linear in every argument. 

T(𝑢(1), … , 𝑢(𝑘)⏟      
𝑐𝑜𝑣𝑒𝑐𝑡𝑜𝑟𝑠

, 𝑣(1), … , 𝑣(𝑙)⏟      
𝑣𝑒𝑐𝑡𝑜𝑟𝑠

) = T (𝑢𝑖1
(1) 𝑑𝑥𝑖1 , … , 𝑣(𝑙)

𝑗𝑙 𝜕

𝜕𝑥𝑗𝑙
) = 𝑢𝑖1

(1), … , 𝑣(𝑙)
𝑗𝑙 T(𝑑𝑥𝑖1 , … ,

𝜕

𝜕𝑥𝑗𝑙
) ≝ 𝑇𝑖1…𝑖𝑘𝑗1…𝑗𝑙  

Tensor Transformation 
(“Tensortransformation”) 

�̃� �̃�1…�̃�𝑘�̃�1…�̃�𝑙 =
𝜕�̃� �̃�1

𝜕𝑥𝑖1
∙ … ∙

𝜕�̃��̃�𝑘

𝜕𝑥𝑖𝑘
∙
𝜕𝑥𝑗1

𝜕�̃��̃�1
∙ … ∙

𝜕𝑥𝑗𝑙

𝜕�̃� �̃�𝑙
𝑇𝑖1…𝑖𝑘𝑗1…𝑗𝑙 with 𝑖1… 𝑖𝑘 contravariant, and 𝑗1…𝑗𝑙 covariant indices. 

Tensor Operations (“Operationen auf Tensoren”) 

Addition Two tensors can only be added if they are of the same type: 𝑇 + 𝑆 = 𝑇𝑖1…𝑖𝑘𝑗1…𝑗𝑙 + 𝑆
𝑖1…𝑖𝑘

𝑗1…𝑗𝑙  

Contraction 
(“Kontraktion”) 

(𝑘 + 1, 𝑙 + 1) → (𝑘, 𝑙):  𝑆𝑖,𝑖1…𝑖𝑘𝑗,𝑗1…𝑗𝑙 → 𝑇
𝑖1…𝑖𝑘

𝑗1…𝑗𝑙    

Tensor Product 
(“Tensorprodukt”) 

(𝑘, 𝑙), (𝑘′, 𝑙′) → (𝑘 + 𝑘′, 𝑙 + 𝑙′):   

𝑇⨂𝑆 (𝑢(1), … , 𝑢(𝑘+𝑘
′), 𝑣(1), … , 𝑣(𝑙+𝑙′)) = 𝑇(𝑢

(1), … , 𝑢(𝑘), 𝑣(1), … , 𝑣(𝑙)) 𝑆 (𝑢
(𝑘+1), … , 𝑢(𝑘+𝑘

′), 𝑣(𝑙+1), … , 𝑣(𝑙+𝑙′))  

Symmetrizer 
(“Symmetrisierer”) 

S(𝜔)(𝑣(1), … , 𝑣(𝑙)) =
1

𝑙!
∑ ω(𝑣π(1), … , 𝑣π(𝑙))𝜋  with  π running over all permutations of (1,… , 𝑙)  

Anti-Symmetrizer 
(“Antisymmetrisierer”) 

A(𝜔)(𝑣(1), … , 𝑣(𝑙)) =
1

𝑙!
∑ (−1)𝜋ω(𝑣π(1), … , 𝑣π(𝑙))𝜋  with  π running over all permutations of (1, … , 𝑙) and 

(−1)𝜋 = 1 for even permutations, and (−1)𝜋 = −1 for odd permutations. Notation: 𝜔[𝑖𝑗] = (A(𝜔))𝑖𝑗 
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Differential Form 
(“Differentialform”) 

A differential form of order 𝑝 is a totally antisymmetric (0, 𝑝)-tensor so that 𝜔 = A(𝜔) 

Wedge Product 
(“äußeres Produkt”) 

The wedge product ∧ of a p-form ∝ and a q-form 𝛽 is defined as 𝛼 ∧ 𝛽 = f(𝑝, 𝑞) A(𝛼⨂𝛽)⟹ 

(α ∧ β)(𝑣(1), … , 𝑣(𝑝+𝑞)) =
f(𝑝, 𝑞)

(𝑝 + 𝑞)!
∑(−1)𝜋 α(𝑣π(1), … , 𝑣π(𝑝)) ∙ β(𝑣π(𝑝+1), … , 𝑣π(𝑝+𝑞))

𝜋

 

 (𝛼 ∧ 𝛽) ∧ 𝛾 = 𝛼 ∧ (𝛽 ∧ 𝛾) ⟹ f(𝑝 + 𝑞, 𝑟) f(𝑝 + 𝑞) = f(𝑝, 𝑞 + 𝑟) f(𝑞, 𝑟) ⟹ solved by f(𝑝, 𝑞) =
g(𝑝+𝑞)

g(𝑝)g(𝑞)
 

convention: g(𝑝) ≝ 𝑝! ⟹ 𝑑𝑥𝑖1 ∧ …∧𝑑𝑥𝑖𝑝 = 𝑑𝑥𝑖1⨂…⨂𝑑𝑥𝑖𝑝 ± permutations(𝑑𝑥𝑖1⨂…⨂𝑑𝑥𝑖𝑝) ⟹ 

(𝑑𝑥 ∧ dy) (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
) = 1  

Alternative convention: g(𝑝) ≝ 1 ⟹ 𝑑𝑥𝑖1 ∧ …∧𝑑𝑥𝑖𝑝 =
1

𝑝!
(𝑑𝑥𝑖1⨂…⨂𝑑𝑥𝑖𝑝 ± perm.(𝑑𝑥𝑖1⨂…⨂𝑑𝑥𝑖𝑝)) 

 𝛼 ∧ 𝛽 ∧ 𝛾 ∧ 𝛿 = −𝛽 ∧ 𝛼 ∧ 𝛾 ∧ 𝛿 = +𝛽 ∧ 𝛾 ∧ 𝛼 ∧ 𝛿 = −𝛽 ∧ 𝛾 ∧ 𝛿 ∧ 𝛼 = ⋯ 
Exterior Derivative 
(“Äußere Ableitung”) 

The exterior derivative extends the concept of the differential of a function to differential forms of higher 
degree. It is the operator 𝑑: Λ𝑝 → Λ𝑝+1 (Λ being the space of p-forms on M, p the number of co-vectors) with 
the properties: 
(1) 𝑑(𝛼 + 𝛽) = 𝑑𝛼 + 𝑑𝛽 (linearity); 
(2) 𝑑2 = 0 (nilpotency); 

(3) on 0-forms (i.e. functions), 𝑑𝑓 =
𝑑𝑓

𝜕𝑥𝑖
𝑑𝑥𝑖; 

(4) 𝑑(𝑓𝜔) = (𝑑𝑓) ∧ ω + 𝑓 𝑑𝜔 for 𝑓 … function, 𝜔…form (chain rule 1) 
Derived rule (chain rule 2): 
𝑑(𝛼 ∧ 𝛽) = (𝑑𝛼) ∧ 𝛽 + (−1)𝑝𝛼 ∧ 𝑑𝛽 for 𝛼 ∈ Λ𝑝, 𝛽 ∈ Λ𝑞 

 

 


