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11.12.2017

Topological Spaces and Homotopy (Topologische Rdume und Homotopie)

Finite Intersection
(“Endliche Schnittmenge”)

The finite intersection A n B of two (finite) sets A and B is the set that contains all elements of A that also
belong to B (or vice versa), but no other element: ANB = {x:x E AAx € B}

Arbitrary Intersection

The intersection of an arbitrary set of sets (collection of sets, family of sets) {A;:i € I} is defined as:
X € Nig; 4; © {x:Vi € I: x € A;}. Attention: If the index set I only contains the empty set (I = {@}) then
with this definition every possible x satisfies the condition and the intersection is the universal set.

Finite Union (“Endliche
Vereinigungsmenge”)

The finite union A N B of two (finite) sets A and B is the set of elements which are in A, in B, or both A and B:
AUB={x:x€ AVx€B}

Arbitrary Union (“Endliche
Vereinigungsmenge”)

The union of an arbitrary set of sets (collection of sets, family of sets) {A;: i € I} is defined as:
¥ EUigdi o xidiel:x €A}

Carthesian Product
(Karth. Produkt)

For sets A and B, the cartesian product A X B is the set of all ordered pairs (a, b) where a € Aand b € B:
AXB ={(a,b):a € ANDb € B}

Cartesian square

The cartesian square of a set X is the Cartesian product X% = X x X.
An example is the 2-dimensional plane R? = R x R . R? is the set of all points (x, y) where x and y are real
numbers (Cartesian coordinate system).

Metric Space
(Metrischer Raum)

Metric Space is a set for which distances between all members of the set are defined. Hence, the Metric
Space (X, d) is a set X with a (distance-)function d: X X X - R, such that

(1) d(x, y) = d(y,x) (symmetry),

(2) d(x,y) = 0 © x = y (identity of indiscernibles), and

(3) d(x,y) + d(y, 2) = d(x, z) (triangle inequality).

Remark: Non-negativity d(x,y) = 0 follows from (1), (2), (3).

Examples: (1) Euclidean Metric on R™ and subsets, (2) Discrete Metric d(x,y) = 1 Vx # y

&-Neighbourhood
(“e-Umgebung”)

£-Neighbourhood (a.k.a Open Ball Sphere) in metric space (X, d): U.(x) = {yeX:d(x,y) < &}
U,(x) is open

Continuity at a point
(Stetigkeit in einem Pkt)

Amap f: X > X of metric spaces (X, d) and (X, d) is called continuous at x € X if

for any £ > 0 there exists a § > 0, such that d(f(x), f(y)) < & for all y with d(x,y) < §
Ve > 0:36 > 0: [d(x, y) < 8:d(f(x), f(y)) < s], equivalent to:

Ve > 0:36 > 0:[y € Us(x) = f(y) € U.(f(x))]

Continuous Map
(Stetige Abbildung)

Amap f: X - X of metric spaces (X, d) and (X, d) is continuous if it is continuous at every x € X.

Open Subset
(Offene Teilmenge)

A subset O c X of a metric space (X, d) is called open subset if each of its points has an &-neighbourhood
that is contained in O, i.e. for each of x € O there exists a positive number € with U,(x) € O:
Vx € 0 3¢ > 0:U.(x) € 0. Example: The set of points (x,y) in R? {(x,y): x? + y? < r?}

Inverse Image (Preimage)
(Urbild)

The inverse image (or Preimage) of a set § € X under a function f: X — X between metric spaces (X, d) and
(X,d)isf71[S] & {x € X:f(x) € S}

Continous Function

Lemma: A function f: X > X between metric spaces (X, d) and (X, d) is continuous if and only if the inverse

(Stetige Funktion) image f~1(0) of every open subset O S X is an open subset of X.

Powerset The powerset P(X) of any set X is the set of all subsets of X, including the empty set @ and X itself.
(Potenzmenge) P(X) ={S:S < X}. Example: If X = {x,y,z} then P(X) = {@,{x}, {y}, {2}, {x, ¥}, {x, 2}, {y, 2}, {x, y, 2}}
Topology A family T of subsets of a set X is called topology on X if it contains X and the empty set @, as well as finite
(Topologie) intersections and arbitrary unions of elements of T.

In other words: Let X be a set, and P(X) a powerset. Then TSP (X) is called a Topology if

(1)@ € T,X € T (T contains X and the empty set),

(2)04,0,,05,...,0, €T = 0,N0, N0z N ..N 0O, €T (T contains every finite union of sets {0;:i € I})),
(3)0; ET Vi €1 = U;; 0; €T (T contains every arbitrary union of sets {0;:i € I})

Topological Space
(Topologischer Raum)

If T is a topology on X, then the pair (X, T) is called a topological space. The notation X; may be used to
denote a set X endowed with the particular topology T'.

Continuous Function in X5
(Stetige Funktion in Xy)

Let (X,T) and ()?,T) be topological spaces. A function f: X — X is called continuous if f‘1(0~) € T for every
O€eT.

Homeomorphism
(Hom6omorphismus)

A homeomorphism is a bijective map f such that both fand f~* are continuous. In such case (X, T) and
(X,7") are called homeomorphic.

Induced Topology
(Teilraumtopologie)

Informally, induced topology (or, Subspace Topology) is the natural structure a subspace of a topological
space “inherits” from the topological space. More formally, given a topological space (X, Jy) and a subset
S C X, the induced topology (Subspace Topology) 7; on S is defined by Tz & {0 N S: 0 € T}

Basis of a Topology
(Topologische Basis)

A Basis (or Base) B for a topological space X with topology T is a collection of open sets in T such that every
open set O; in T can be written as a union of elements of B. We say that the base generates the topology T'.
Hence, a basis of topology T is a subset B of T such that any O € T can be written as O = {U;¢; 0;: 0; € B}
Remark: Bases are useful because many properties of topologies can be reduced to statements about a base
generating that topology. Examples: (1) Discrete topology: 1-element sets are a basis.

(2) Metric Topology: e-neighbourhoods are a basis: B = {U.(x) :x € X}

Product Topology
(Produkttopologie)

Given the topological spaces (X, 7y) and (Y, 7;,), we define (X X Y, Ty,y) by taking
B = {0y X 0y: 04 € Ty, 0y € T} as a basis for the product topology Ty




Interior
(Inneres, Innerer Kern)

The interior M° of a subset M of a topological space X consists of all points of M that do not belong to the
boundary of M. Thus, M is the union of all open sets contained in M: M® = {U;; 0;: 0; € T,0; S M}
The Interior M is defined to be the largest open set contained in M.

Example: If M is a ball in R® then the Interior M? is all points satisfying the inequation x? + y% + z%2 <12,

Closure
(Abschluss)

The closure M of a subset M of a topological space X consists of all points in M together with all limit points
of M. The closure of M may equivalently be defined as the union of M and its boundary, and also as the
intersection of all closed sets containing M: M = {N;¢; C;: C; 2 M}

Intuitively, the closure can be thought of as all the points that are either in M or "near" M.

Example: For x? + y? < r? the closure is x2 + y% < r?

Dense Subset
(Dichte Teilmenge)

A subset M of a topological space X is called Dense if every point x in X either belongs to M or is a limit point
of M. Informally, for every point in X, the point is either in M or arbitrarily "close" to a member of M.

M c X is called dense in X, if and only if X = M. Example: Every real number is either a rational number or
has one arbitrarily close to it, hence Q is dense in R .

Boundary A boundary dM of a subset M of a topological space X is the set of points in the closure of M, not belonging
(“Rand”) to the interior of M: 9M = M\M°. Example: For x? + y? < 12 the boundary is x? + y? = r?
Neighbourhood Let (X,T) be a topological space. For a point x € X an open subset O € T is called open neighbourhood of x
(“Umgebung”) ifalsox € 0. A subset U € X is called neighbourhood of x € X if3 0 € T:x € O C U, thus if U contains an
open neighbourhood of x. Remark: S € X is open if and only if S is a neighbourhood of each of its points.
Haussdorff Space Intuitively, a Haussdorff Space is a topological space where all pairs of different points x and y can be
(“Haussdorff-Raum”) separated by neighbourhoods. Formally: A Haussdorff Space is a topological space X such that for any
x € X,y € X,x # y there are open sets 0; 3 x,0, 3 ysothatO; N 0, = @.
Remark: Almost all spaces encountered in analysis are Hausdorff; most importantly, R is a Hausdorff space.
More generally, all metric spaces are Hausdorff.
Covering If X is a topological space, then the covering C of X is a collection of subsets S; € X whose union is the whole
(“Abdeckung”) space X, thus X = U S;.
Compact A topological space X is called compact if, for every covering of X by open sets, a finite number of these sets
(“kompakt”) already constitute a covering. Examples: (1) A closed bounded interval is compact. (2) R is compact.

(3) An open interval is not compact.

Locally Compact
(“lokalkompakt”)

If X is a topological space, then X is called locally compact if every x € X has a compact neighbourhood.

Theorems about
compactness

o A compact subset S € X of a Hausdorff Space X is closed (“compact=closed”)

o Closed subspaces and continuous images of compact spaces are compact

o Metric spaces are compact if and only if every sequence contains a convergent subsequence
o For subsets of R™: (compact)& (bounded and closed)

o Finite unions of compact spaces are compact

Compactification
(“Kompaktifizierung”)

Compactification of (X, 7") is a compact topological space (X, ) such that X 2 X, and X is dense in X

(X = X), and T is the topology that is induced (with respect to the inclusion) on X by 7. Example: (1)
Compactification of the open ball is the closed ball. (2) Consider the real line R with its ordinary topology. R
is not compact; in a sense, points can go off to infinity to the left or to the right. It is possible to compactify
the real line R by adding two points, +00 and —oo; this results in the extended real line R.

Alexandroff Compactification,
One-Point Compactification

(“Alexandroff-
Kompaktifizierung,
Ein-Punkt-
Kompatifizierung”)

Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a
way that the resulting space is compact. More precisely, let X be a topological space. Then the Alexandroff
extension of X is a certain compact space X together with an open embedding c: X — X such that the
complement of X in X consists of a single point, typically denoted w or co. The map ¢ is a Hausdorff
compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the
Alexandroff extension is called the one-point compactification or Alexandroff compactification.

X =XU{w},7 =T U{Su{w}X\Sis compact in X} . Example: The 1-point compactification of R™ is
homeomorpic to the n-dimensional sphere S™ c R™.

Equivalence relation
(“Aquivalenzrelation”)

An equivalence relation ~ over a set X is a binary relation that is at the same time a reflexive relation, a
symmetric relation and a transitive relation:

(1) x ~ x (reflexivity),

(2) x ~y © y ~ x (symmetry), and

(3)x ~y ANy ~z = x ~ z (transitivity)

Quotient Space
(“Quotiententopologie”)

Let (X, Jy) be a topological space, and let ~ be an equivalence relation on X. The quotient space, Y = X/~ is
defined to be the set of equivalence classes of elements of X: Y = {[x]: x € X} = {{v € X:v~x}:x € X}
equipped with the topology 73 where the open sets are defined to be those sets of equivalence classes
whose unions are open sets in X.




Real Projective Space RP"
(“Reell-Projektiver Raum”)

The Real Projective Space RPP" of dimension n is the topological space of lines passing through the origin Oin
R™1, Itis a compact, smooth manifold of dimension n. As with all projective spaces, RP™ is formed by taking
the quotient of R”“\{ﬁ} under the equivalence relation x ~ Ax for all real numbers A # 0. Forall x in
R"“\{a} one can always find a A such that Ax has norm 1. There are precisely two such A differing by sign.

- Definition of the equivalence relation in R"”\{a} by (xg, X1, ) %) ~ (Axg, A4, ..., Ax,) for 1 € R\{0}.
So, under this definition ¥~y < 31 # 0: X = Ay. This means: If the coordinates of a point are multiplied
by a non-zero scalar then the resulting coordinates represent the same point (“homogeneous
coordinates”, see next point).

- RP™" is the set of equivalence classes under ~ denoted by (x,: x;: ...: x;) (homogeneuous coordinates)

- Every class has precisely two representatives with x2 + x? + ---+ x2 = 1

- Inevery U; € RP", determined by x; # 0, one can choose a unique representative by
(%9, X1, or Xi—1, 1, X;41, ...) = each of U; <> R™. In other words: The set U; that can be represented by
homogeneous coordinates with x; = 1 for some i > 0 form a subspace that be identified withR™.

- As an example, take R3. In homogeneous coordinates, any point (x: y: z) with z # 0 is equivalent to
(x/z:y/z:1). So there are two disjoint subsets of the projective plane: that consisting of the points
(x:y:z) =(x/z:y/z: 1) for z # 0, and that consisting of the remaining points (x: y: 0). The latter set can
be subdivided similarly into two disjoint subsets, with points (x/z: 1: 0) and (x: 0: 0). This last point is
equivalent to (1:0:0).

- This shows that RP™ can be covered by n + 1 coordinate patches U; that are isomorphic to R™.

- Each patch RP™\U; is isomorphic to RP™*™1: RP™\U; = {(xg, X1, o) Xi—1, 0, Xj11, o) X )} < RP™1

- Projective space RP" is therefore a disjoint union RP™ = R* U R®** U ...U R! U R? (where R? is a single
point)

Disconnected
(“unzusammenhangend”)

A topological space (X, T) is called disconnected if it is the union of two disjoint nonempty open sets. More
formally, X is disconnected, if X = O; U O, for some open sets O; # @ and 0, = @ withO; N 0, = @.
Remark: obviously 0; = X\0, and 0, = X\0,. These are also closed, so we could have made this definition
also with closed set.

Connected
(“zusammenhangend”)

A topological space (X, T) is called connected if it is not disconnected.

Path
(“Weg")

A path in a topological space (X, T) is a continuous map (i.e. function) f from the unit interval I = [0,1] to X:
More formally: Let (X, T) be a toplogical space. Path f = {f: [0,1] — X:a,b € X,f(0) = a,f(1) = b }

Pathwise Connected
(“wegzusammenhanged”)

A topological space (X, T) is pathwise connected if for any two points a € X, b € X there exists a path from
atob:Va,b € X 3f:[0,1] - X: f continous, f(0) = a,f(1) = b.

pathwise connected = connected (but not the other way!) Counterexample (connectd, but not pathwise
connected): Consider the graph A of y = sin G) over R* (subset of R? under open topology of R?) with

closure 4 = A U ({0} x [—1,1]). 4 is connected, but there is no path from the boundary A N A to A

Loop
(“Schleife”)

Aloop in a topological space X is a continuous function f from the unit interval I = [0,1] - X such that
f(0) = f(1). In other words, it is a path whose initial point is equal to the terminal point.

Invariance of connected
components under
homeomorphism

The number of connected components is invariant under homeomorphism (i.e. under a bijective map f such
that both fand f~* are continuous). Connectedness is therefore a topological invariant, i.e. a property that is
invariant under homeomorphisms.

Homotopy
(“Homotopie”)

Two continuous maps f: X — Y, g: X = Y are homotopic if there exists a continuous (meta-)map (a “map of
maps”) F: X x [0,1] - Y with Euclidean product topology F(x,0) = f(x),F(x, 1) = g(x) Vx € X.
Homotopy is an equivalence relation.

Group
(“Gruppe”)

Informally, a group captures the essence of symmetry. The collection of symmetries of any object is a group,
and every group is the symmetries of some object.

Formally, a group is a set, G, together with an operation e (called the group law of G) that combines any two
elements a and b to form another element, denoted a b or ab. To qualify as a group, the set and operation,
(G,*) must satisfy four requirements known as the group axioms:

(1) Forall a, b € G, the result of the operation, a e b, is also in G (closure),

(2) foralla,b,c € G, (aeb)ec =a-e(bec)(associativity),

(3) there exists an unique element e € G such that, Va € G: e » a = a » e (identity element), and

(4) for each a € G, there exists an element b € G, suchthata e b = b e a = e, (associativity).

Example: Set of integers Z. (1) For any two integers a, b € Z, the sum (a + b) is also integer (2) for all
integersa,b,c €Z: (a+b)+c =a+ (b+c)istrue; (3)ifa €Z,then0+a=a+ 0 = a (with 0 being
the identity element); and (4) for every integer a, there is an integer b suchthata+ b =b + a = 0. The
integer b is called the inverse element of the integer a.

Abelian Group
(“Abelsche Gruppe”)

An Abelian Group A is a group that in addition to the four group axioms also satisfies commutativity:
Va,b € A:a*b = b ea.Example: Set of integers Z with the operation addition "+".

Fundamental Group m;
(“Fundamentalgruppe ;")

The fundamental group mt, (Y) is the set of all homotopic classes f from a circle to Y.
Group structure: Every f: S* - Y corresponds to a closed path f(0) = f(1) = x,.
Unit element: f = x, = const.

ft—1) ..t =
Composition: fo g(t) =

920
Inverse: f~1(t) = f(1 —t).
The group structure is independent of x,, if Y is pathwise connected.

(f and g start and end at x;)
Wt <

NP =

Theorem about 1, (Y x ¥)

Let Y and Y be topological spaces. Then the fundamental group of their product space 111(}’ X }7) =m, ()
1,(¥) where the direct product ‘@’ is defined by G®G = {(g, §): g € G, § € G} with the group structure
(91, 3192 F>) = (9192, §19>)-

-3-




Simply Connected

Let Y be a topological space. Y is called simply connected if it is pathwise connected and its fundamental
group 1, (Y) = e, with e being the unit element.

Covering Space
(“Uberlagerung”)

()?,T) is called a covering space of (X, T") if there exists a continuous surjective map m: X — X such that
every x € X has a neighbourhood U(x) such that 7 is a homeomorphism from I to U(x) for every connected
component U of =1 U(x). Loosely speaking, X locally looks like X.

Universal Cover
(Universelle Uberlagerung)

X is called the universal cover if 1'[1()?) is trivial, i.e. if it exists and is unique up to a homeomorphism for well-
behaved spaces.) The universal cover (of the space X) covers any connected cover (of the space X).
Universal cover =

{classes of maps: f[0: 1] - X : f(0) = x,,f ~ gif f(1) =

g(1) and the loop determined by fg™! is trivial}

Manifolds and Homology (Mannigfaltigkeit und Homologie)

Manifold
(“Mannigfaltigkeit”)

A manifold M is a topological space that locally resembles Euclidean space near each point. More precisely,
each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space
of dimension n. Examples: One-dimensional manifolds include lines and circles, but not figure eights (because
they have crossing points that are not locally homeomorphic to Euclidean 1-space). Two-dimensional
manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, but also the Klein
bottle and real projective plane.

Differentiable C™ Manifold
(Diff.bare Mannigfaltigkeit)

A n-dimensional differentiable C"-manifold M (where r stands for r times differentiable) is a Haussdorf
space with a C" atlas (where r = {0,0,1,2,...}.

C" Atlas
(“C" Atlas”)

A C" atlas is a set of charts (Ui,x(i)) where U; are open subsets of Mand the x;) are condinous invertible (i.e.
homeomorphic) maps of U; to open subsets of R™ such that

(1) all of M is covered by all U;: M = U; U;,i € 1, and

(2) U; nU; # @ = x5, x(j} is 7 times continuously differentiable on x.;, (U; N U;)

Compatible atlases

Two compatible atlases (i.e. atlases witch charts obeying condition (2)) are understood to define the same
manifold.

Analytic Manifold
(Analytische Mannigfaltigk.)

Analytic manifolds (C" replaced by ‘analytic’) are smooth manifolds with the additional condition that the
transition maps are analytic (they can be expressed as power series).

Orientable Manifold
(“Orientierbare Mannigf.”)

Let M be a differentiable manifold. M is orientable if there exists an atlas {(Ui,x(i))} such that the Jacobian

determinant det <m> (where x7!) denotes the n‘" variable an i the i*" coordinate in R") is positive
OG0

for all non-empty U; N U;.

Paracompact
(“parakompakt”)

A manifold M is paracompact if for every atlas {(Ui,x(i))} there exists an atlas {(Vi,y(i))} with neighborhood
V; € U; for some i, such that every point in M has a neighborhood intersecting only finitely many V;.

Diffeomorphic

The manifold M and M’ (speak: “M prime”) are called diffeomorphic if 3f: M — M’ such that x'fx~1is C" an

(“diffeomorph”) invertible (with inverse also C") wherever it is defined with respect to charts (U, x), (U’, x") respectively.
Lie Group Informally, a Lie Group is a group of symmetries where the symmetries are continuous. A circle has a
(“Lie Gruppe”) continuous group of symmetries: you can rotate the circle an arbitrarily small amount and it looks the same.

Formally, a Lie Group G is a (finite dimensional smooth) differentiable manifold that is at the same time a
group such that the group multiplication f: G X G - G with f(x,y) = xy ™! is differentiable.

Group Action
(“Gruppenoperation”)

Informally, a group action is a way of interpreting the manner in which the elements of the group correspond
to transformations of some space in a way that preserves the structure of that space.

Formally, a group action on a manifold is a differentiable map 0: G X M — M such that g, o 0), = gy, (left
group action ghx), or gy, © g, = 0y, (right group action xhg), where o, (x) = o(g,x)

Effective Group Action
(“effektive Operation”)

Informally, a group action is effective if every element, except for the unit element, does something.
Formally, a group action is effective if only the identity element e acts trivially: o x)=xVxeM=g=e.
Example: M = R",G = group of rotations.

Free Group Action
(“freie Operation”)

A group action is free if only o, has fixed points: o,(x) # x Vx € M, g € G\{e}

Transitive Group Action
(“transitive Operation”)

A group action is transitive if “all points can be moved”: Vx,y € M3g € G:y = o,(x)

Isotropy Group
(“Isotropiegruppe”)

The isotropy group (also called little group or stabilizer) of a point x € M is the subgroup
H(x) = {g €Gio (x) = x} of G consisting of all the group elements that have x as a fixed point.

Classical Lie Groups
(“Klassische Lie-Gruppen”)

Classical Lie Groups can be represented by matrices. Consider a vector space V = F" (where = means

‘isomorphic’ and F" is a field (“Kérper”), typically R™ or C"). Given a basis of V, any f € Aut(V) is

represented by an invertible matrix M € GL(n, [F) (where Aut(V) is an automorphism and GL stands for

“general linear”)

o SL(n, IF): Group of matrices with determinant 1

e SO(n, F): Group of orthogonal matrices with det=1. Orthogonal matrices leave the metric g,,,, = 8pp, OF
the Euclidean space invariant.

e Sp(2n, F): Group of 2n X 2n-matrices that leave the n-fold tensor product invariant.




Simplicial Homology (“Simpliziale Homologie”)

Simplicial Homology
(“Simpliziale Homologie”)

Simplicial homology formalizes the idea of the number of holes of a given dimension in a simplicial complex.
It provides a way to study topological spaces whose building blocks are n-simplices. By definition, such a
space is homeomorphic to a simplicial complex by a triangulation of the given space.

Orientation An orientation of a k-simplex is given by an ordering of the vertices, written as (vy, ..., V), with the rule that
(“Orientierung”) two orderings define the same orientation if and only if they differ by an even permutation.
Affine Space Affine space is a geometric structure that generalizes the properties of Euclidean spaces in such a way that

(“Affiner Raum”)

these are independent of the concepts of distance and measure of angles, keeping only the properties
related to parallelism and ratio of lengths for parallel line segments.

Barycentric Coordinates
(“Baryzentr. Koordinaten”)

Let B, ..., Bn be the vertices (“Eckpunkte”) of a simplex in an affine space A. The vertices themselves have the
coordinates g; = {1,0,0,..,0}, 5, = {0,1,0,..,0}, ..., 5, = {0,0,0,..,1}. If, for some point ¥ in 4, (¢; + -+
€)X = c1x1 + - + ¢, x, and at least one of ¢, ... ¢, does not vanish then the coefficients c; ...c, are
barycentric coordinates of X with respect to py, ..., p,. Often the values of coordinates are restricted with a
condition Y ¢; = 1, which makes them unique. Such coordinates are called absolute barycentric coordinates.

Convex Hull
(“Konvexe Hiille”)

The convex hull Conv(B,, B, ..., Px) of a set X of points (g, Py, ..., D) in an Euclidean space (or, more
generally, in an affine space over the reals) is the smallest convex set that contains X. For instance, when X is
a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band
stretched around X.

Simplex
(“Simplex”)

A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. Simplex
0: (Bo, Buy s Pr) & X € R™x = Tl ¢, ¢ 2 0,38 ¢; = 0} = Conv(Bo, By, ..., By)- If o lies in a k-
dimensional subspace of R" - dim(k)

Oriented simplex

o: (pg, -, py) is oriented if (py, ..., p,) = (—1)”(;7,,(0), ...,pn(r)) for  being a permutation of {0, ..., 7}

Face

The convex hull p = Conv(S) : S € {p,, By, -, Br} of any m points of an k-simplex is also a simplex, called an

m-face. The O-faces (dim(p) = 0) are called the vertices (“Eckpunkte”), the 1-faces (dim(p) = 1) are called
the edges (“Kanten”), the (k — 1)-faces (dim(p) = k — 1) are called the facets (“Facetten”), and the sole k-

face is the whole n-simplex itself. All m-faces with m < k are called proper faces. The empty set and the sole

k-face are called improper faces.

Simplicial Complex
“Simplizialkomplex”

A simplicial complex K is a finite set K of simplices in R™ such that:
e g € K (“every face of g isin K”)
® 0,0, €EK=0,N0; =0 Vo;No;is aface of both g; and g;.

Polyhedron of simplicial
complex K

A polyhedron of a simplicial complex K is defined as Ug,ex 0;

Triangulation
(“Triangulierung”)

A triangulation of a topological space X is a simplicial complex K, homeomorphic to X, together with a
homeomorphism h : K — X. A topological space is trianguable if it is homeomorphic to a polyhedron of
some simplicial complex. This is true for differentiable manifolds in 2D and 3D, but generally not for 4D.

Simplicial r-chain
(“simpliziale r-Kette”)

A simplicial r-chain is a finite sum YV, ¢;0; where each c; is an integer and g; is an oriented k-simplex:
TN c0.:¢c; €Z,0; € K, dim(g) =1}

r-Chain Group

The r-chain group C,.(k) is the abelian group freely generated by the r-simplices {¥¥, c;0;:¢; € Z, 0; €
K,dim(g;) = r}

Boundary Operator
(“Randabbildung”)

Let g: (py, .., pr-) be an oriented r-simplex. The boundary operator d,.: C, — C,_, is the homomorphism
defined by 8,.(0) = X7_o(—1)' (Do, -, Bis - Pr ) Where (Do, ..., Py ..., Dy ) is the i face of o, obtained by
deleting its i vertex. d,_,(9,(¢)) = 8,_, © 8, = 0.

Cycle Group

The cycle group Z,. = ker(d,.)

Boundary Group

The boundary group B,_; =im(9d,); d,_,°0, =0= B, S Z,

Simplicial Homology Group

The simplicial homology groups H,.(K) of a simplicial complex K are defined using the simplicial chain
complex C(K), with C,.(K) the free abelian group generated by the r-simplices of K: H,.(K) = Z,.(K) /
B,.(K). The most general form of H,.(K) is H,(K) = Z@® .. ®Z @ Zy; @ ... ® Zy,,.

s )
The first f factors form a free Abelian group of rank f and the next p factors are called the torsion subgroup
of H,.(K) .

Betti Numbers
(“Betti-Zahlen”)

Informally, the 7" Betti Number refers to the number of r-dimensional holes on a topological surface. The
first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional
simplicial complexes: b, is the number of connected components, b, is the number of one-dimensional or
"circular" holes, b, is the number of two-dimensional "voids" or "cavities". Formally, The " Betti number
represents the rank of the r** homology group, denoted H,: b, = dim H,.(K, R).

Euler Characteristic

The Euler characteristic (or Euler number, or Euler—Poincaré characteristic) is a topological invariant. It is a
number that describes a topological space's shape or structure regardless of the way it is bent. This means
that any two surfaces that are homeomorphic must have the same Euler characteristic. The Euler
characteristic y was classically defined for the surfaces of polyhedra, according to the formula y =V — E +
F where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given
polyhedron. For example, for a Tetrahedron y =V —E+F =4—-6+4 = 2.

Similar, for a simplicial complex, the Euler characteristic equals the alternatingsum y = I, — I, + 1, — -+
where I is the number of r-simplices in k. Hence, y(K) = X7 (- 1)"I. = ¥*_,(—=1)"b,

Connected Sum
(“Verbundene Summe”)

A connected sum of two m-dimensional manifolds is a manifold formed by deleting an open ball from each
manifold and gluing together the resulting boundary spheres. Let M; and M, be two smooth manifolds of
equal dimension n. Then the connected sum is denoted M;#M,.

Euler Characteristic of
connected sums

Let M; and M, be two smooth manifolds of equal dimension n. Then the euler characteristic of the
connected sum y(M,#M,) = y(M;) + y(M,) — x(S™).




Connected manifolds

Examples: (1) Cylinder = S* X R, (2) Mdbius Strip = S* X R (with X being the twisted product). The
Mébius strip is non-orientable and has only one boundary component. (3) Torus T2 = §* x §!

Homology for Sub-M

anifolds (“Homologie von Untermannigfaltigkeiten”)

Sub-Manifold
(“Untermannigfaltigkeit”)

Given the manifolds M and N and an injective map f: M — N. If f(M) is diffeomorphic to M then f(M) is a
sub-manifold of N.

Manifold with Boundary
(“Berandete Mannikfalt.”)

A manifold with boundary is defined like an ordinary manifold, but allowing charts in R} & R N {x > 0}.
Signs of such manifolds are derived from some suitable triangulation. The definition of chains, boundaries,
boundary operators on chains and betti-numbers remain unchanged.

Homologous Manifolds
(“Homologe Mannigf.”))

Two manifolds are homologous if their difference is a boundary.

Intersection

Assuming a Manifold M is oriented, chains py, p,_ intersect traversely atp € M if
det (w) # 0 for p,(t) oriented parametrizations of py, pp_x, M.

Intersection number
(“Schnittzahl”)

9(x1,...Xn)
#(PK ° PN-K) = Dpeppnpn_i SIEN (aa(f,;;))' Depends only on the homology class.

Poincaré Duality
(“Poincaré Dualitat”)

Any linear functional H,_; — Z can be expressed as intersection with some p, € Hg.
#(ppr © p1) = 0Vp, € H, = p,_, is a torsion class.

Genus
(“Geschlecht”)

Every compact connected surface is of the form #gTz,g ={0,1,2,...}: orientable, g = genus . The genus g
of a closed orientable surface is the “number of handles”, or (equally) the “number of holes”. The euler
characteristics of a closed orientable surface calculates as y = 2 — 2g. The genus k of a closed non-
orientable surface is the number of real projective planes in a connected sum decomposition of the surface.
The Euler characteristic can be calculated as y = 2 — k.

Crosscap
(“Kreuzhaube”)

The crosscap can be thought of as the object produced by removing a small open disc in a surface and then
identifying opposite sides. That is equivalent to gluing a mébius strip into the hole and taking the connected
sum with RPP?

Attaching a handle
(“Henkel ankleben”)

Cut out two discs, identify boundaries. The Euler characteristic of the surface resulting from S? by attaching h
handles and ¢ crosscaps has y =2 —2h —c.

Differential Aspects of Manifolds (“Differentialaspekte von Mannigfaltigkeiten”)

Tangent Space
(“Tangentialraum”)

Informal description: To every point p of a differentiable manifold a tangent space can be attached. The
tangent space is a real vector space that intuitively contains the possible directions in which one can
tangentially pass point p. The elements of the tangent space at p are called the tangent vectors v, at p.
More formally, the tangent space T, (M) of the differentiable manifold M (with p € M) is the linear span

(“lineare Hulle”) of the operators % acting on functions that are differentiable in the neighborhood of p.

i

D, = vp " lacts via O, f = vp ; (summatlon convention).

af a
Remark: Given a curve C: x! = xi(t), then 2 E = ;a—t is the “direction of C at point p’ W|th -— bemg the
velocity.

Tangents Space is a vector
space

As D, (af + Bg) = ad,f + BD,g and 9,(fg) = (P,f)g + f(¥,g), tangent space is also a vector space.

Coordinate Transformation
(“Koordinatentransform.”)

N . i i N ) ;0%) a i oxl
To simplify notation: v,! & v, Then? = v' — =1v'—— = 7/ = =’
pity P axt axt ox axt

Cotangent Space
(“Kotangentialraum”)

The cotangent space T, (M) is the dual space Hom(T M), ]]R) dual to T, (M) (Hom being the space of linear
maps). The basis dual to{ }IS denoted by {dx°}. (dx! ,—) = 5‘ Cotangent vector: @i = y; dx’ = 1i; dxt

g o
iy = on Y

Tensor Atensor T of type (k, 1) isamap T: T, X ... X T, X T, X ... X T, > R that is linear in every argument.
k times Ltimes
(1) (k) — ® i1 j1 9 (1) i1 a def iy
T, ..., ut vy, ., vg)) = T(ui1 dx", .., v = o) = Wiy ’7(1) T(dx", T Tha-t% 5
covectors vectors
i S0 ozl gtk gx1 axi . - . o
Tensor Transformaticn Th-tey 5 = Parr R rils s aleTll ”‘,1 Jj, With i; ... i, contravariant, and j; ... j; covariant indices.

(“Tensortransformation”)

Tensor Operations (“Operationen auf Tensoren”)

Addition

Two tensors can only be added if they are of the same type: T 4+ § = Th-l; 4 St

Contraction
(“Kontraktion”)

J1
(k+1,1+1) - (k1) S¥ir-te - Th-l

Tensor Product
(“Tensorprodukt”)

(e, D), (k' 1) = (k+ K, L+ 1'):
T®S (u(l), s u(“k’)r V(1) =ee» U(z+l’)) = T(u(l)r e, u, V(1) w=s V(l)) N (u(kﬂ)r ey u(“k’)v V(+1)r + V(z+l’))

Symmetrizer
(“Symmetrisierer”)

S(a))(v(l), . v(l)) = %Zﬂ u)(vﬂ(l), s Vn(z)) with T running over all permutations of (1, ..., 1)

Anti-Symmetrizer
(“Antisymmetrisierer”)

A(w)(v(l), .. v(l)) = %Zn(—l)”m(vnm, ﬂm) with T running over all permutations of (1, ..., ) and
(=1)™ = 1 for even permutations, and (—1)" = —1 for odd permutations. Notation: wy;;; = (A(w));;




Differential Form
(“Differentialform”)

A differential form of order p is a totally antisymmetric (0, p)-tensor so that w = A(w)

Wedge Product
(“auBeres Produkt”)

The wedge product A of a p-form o< and a g-form 8 is defined as a A B = f(p, q) A(a®pB) =

flp. @)
@A B (V) s Vi) = mz(—l)" (Vn(ay, s Vnp)) - B(Vnpa1)s s Vnipra))

(@nB)Ay=an(BAy)=fp+qr)ilp+q)=1f(p,q+r)i(qr) = solved by f(p, q) =%

convention: g(p) & p! = dx A .. Adx" = dx'® ... ® dx'» + permutations(dx"'® ... ® dx») =
3 8
(dx/\dy) (a,a) =1
Alternative convention: g(p) & 1 = dx A ...Adx = i(dx“@ . ®dx + perm.(dx"® ... ® dx'»))
AABAYAS=—BAaAAYAS=4+BAYAaANS=—LBAYyASAa ="

Exterior Derivative
(“AuBere Ableitung”)

The exterior derivative extends the concept of the differential of a function to differential forms of higher
degree. It is the operator d: AP = AP*! (A being the space of p-forms on M, p the number of co-vectors) with
the properties:

(1) d(a + B) = da + dp (linearity);

(2) d? = 0 (nilpotency);

(3) on O-forms (i.e. functions), df = %dxi;

(4)d(fw) = df)Aw+ fdw for f ... function, w...form (chain rule 1)
Derived rule (chain rule 2):
dlanpB)=([da) AB+ (—1D)Pandpfora € AP,B € N




