Helmut Hoérner
An Exact, Fast Algorithm
for the "Charge Refinement Problem"
in the Simulation of Heavy-Ion Collisions,
in Comparison to Slimmed-Down Neural Networks

Project Report

Version 3

Vienna University of Technology
Institute of Theoretical Physics

Vienna, November 2019

Abstract

In certain numerical simulations of the early stages of heavy-ion collisions it is necessary to split charges
in Wigner-Seitz cells into smaller sub-charges, which are then smoothly distributed as to approximate
a continuous charge distribution. "Smooth" means that the discrete fourth derivate should be constant
within each Wigner-Seitz cell. In this paper, we demonstrate that simple, dense neural networks can be
trained to learn this charge distribution task, and how these networks reveal the linearity of the problem.

We derive a very fast linear algorithm for directly calculating the exact charge distribution without
neural networks, and present a C++ implementation of this algorithm. FEventually, we go back to
neural networks and present more refined convolutional network architectures with a significantly reduced
number of trainable parameters. Because of their lean structure, these refined networks are a good
alternative to the exact solution when it comes to a very large number of charges.

Contents

1 Introduction 5
2 The Deep Learning Approach 6
2.1 Generating Training Data with the Original Iterative Algorithm 6
2.1.1 Theory e 6

2.1.2 Implementation in Python 10

2.2 Exploration of Multiple Deep Learning Configurations 11
2.2.1 TImplementation in Python 11

2.2.2 Results e 14

3 The Linear Algebra Approach 16
3.1 From Deep Learning to Linear Algebra 16
3.2 The Exact Linear Solution 18
3.2.1 Exact Solution for Constant Second Derivative 18

3.2.2 Exact Solution for Constant Fourth Derivative 23

3.3 Implementation in C+4 27
3.3.1 Passing and Retrieving Charges in C++ Arrays. 28

3.3.2 Passing and Retrieving Charges in Vectors 29

3.3.3 Passing and Retrieving Charges One by One 30

3.3.4 Retrieving Matrices My and Myo 31

3.3.5 Generating Matrix Files by Command Line Parameter Calls. . . . 32

3.3.6 Explanations to the Charge Refinement Class Core Function . . . 34

4 Back to Neural Networks 35
4.1 Can Matrix My be Retrieved From a Trained Neural Network? 35
4.2 Retrieving Matrix My More Directly From a Neural Network 40
4.3 Retrieving Matrix My Most Directly 42
4.4 Simple Convolutional Networks 44
4.4.1 Theory o e 44

4.4.2 First Implementation in Python 45

4.4.3 Results e 49

4.5 Improved Implementation in Python with Handling of Boundary Charges 51
4.5.1 Results 51

4.6 Better Results with Less Neurons 54
4.6.1 A Refined Architecture - The Basic Idea 54

4.6.2 The Actual Implementation 55

4.6.3 Results 59

4.7 Further Slim Down the Neural Net 61
4.7.1 Exploiting Mirror Symmetry 61

4.7.2 The Actual Implementation 62

4.73 Results 65

5 Conclusions 67

6 Appendix 68
6.1 Listing "Charge Refine Train Data Generator" 68
6.2 Listing "Charge Refine Deep Learning Explorer" 70
6.3 Listing "Charge Refinement Class", 73

6.3.1 Header File 73
6.3.2 clsChargeDistr 74
6.4 Convolutional Network with Handling of Boundary Charges 82

1 Introduction

In [Gelfand et al, 2016], a numerical simulation of the early stages of heavy-ion colli-
sions in 341 dimensions is presented. It makes use of the nearest-grid-point (NGP)
interpolation method [Moore et al, 1998], where a particle charge Q(t) at a specific time
t is fully mapped to the closest lattice point. The charge density only changes when
a particle crosses the boundary in the middle of a cell such that its nearest-grid-point
changes. These boundaries can be formally defined with a Wigner-Seitz lattice, with
lattice points marking the center of each cell.

However, for the simulation not to produce a lot of numerical artifacts, it is crucial to
approximate a continuous charge distribution. Therefore, it is not sufficient to represent
the total charge per Wigner-Seitz cell with a single charge. Instead, in each Wigner-
Seitz cell the total charge must be split into smaller sub-charges, which are then smoothly
distributed as to approximate a continuous charge distribution (see Figure 1).

Q

1.4
° []
0.8 . [
[] s ° ®

0.6 .. .°) e
. [o .

| []

L ° Y
04 * ‘0 ® s
0.2 = by
47

| o . []) ° ' L4

| . ()

5 \ 10 15 20 p5 30

Figure 1: Originally, the total charge in each Wigner-Seitz cell (green lines) is repre-
sented by a single charge (red dots). By splitting these single charges into
multiple charges (blue dots), and distributing them so that the discrete fourth
derivative is constant within each cell, a continuous charge distribution can
be approximated. Please note that the refined charges (blue dots) are plotted
with four times their actual values to better set them in visual context with
the original charges (red dots).

In this context, "smooth" means that the discrete fourth derivate should be constant
within each cell. In [Gelfand et al, 2016], a (rather slow) iterative algorithm was imple-
mented to simulate such a charge distribution.

The initial goal of this project was to find out to what extent a deep-learning neural
network could be trained to speed up this charge distribution task, and (if possible) to
provide such a trained network.

As we will show in the following chapter 2, it turned out that

(i) Deep networks can be trained to fulfill this task;

(ii) the fewer layers a network has, the better it works for this job;

(iii) so that, eventually, not-at-all-deep dense networks with no hidden layers work best;
)

(iv) and, additionally, such simple networks provide the best results if any non-linear
activation function is abandoned in favor of a simple linear activation function.

Such an extremely simplified neural network can (because of its linear activation func-
tion) be represented by a simple linear vector/matrix equation. Therefore, the problem
can obviously be reduced to linear algebra. Consequently, we derived the exact linear
solution, which we present later on in chapter 3.2, and a corresponding C++ implemen-
tation in chapter 3.3.

Eventually, in chapter 4 we compare the weight matrix of a trained dense neural net-
work with the exact solution, and further demonstrate how it still makes sense to use a
convolutional network to quickly solve the charge-distribution problem for large charge
distributions.

2 The Deep Learning Approach

2.1 Generating Training Data with the Original Iterative Algorithm
2.1.1 Theory

This chapter gives an overview of the iterative algorithm as presented in
[Gelfand et al, 2016], that has been re-implemented by us in Python in order to gen-
erate the training data set.

(1) Let @, be the total charge in the j-th Wigner-Seitz cell. In this first step we create
N sub-charges ¢; for each original charge Q;, with Nj <1i < N(j+ 1). So, if we
have, let’s say, 8 original charges @1 ---Qg, and we decide to split each of these
original charges into N = 4 sub-charges, then we get 32 sub-charges ¢ - - - ¢32,
with sub-charges qi,¢o,q3,q4 being in the same cell as initially @), sub-charges
qs, 96, q7, qs being in the same cell as initially ()2, and so on. These sub-charges
are then evenly distributed along the z-axes.

(2) Each of the sub-charges get the initial value ¢; = % for every Ny <i < N(j+1).

So, in our example the initial values are set to g1 = q2 = q3 = q4 = %, Q5 = qs
— s (
4

Q7ZQS:%7 "5 429 = 430 = 431 = 432 = see Figure 2).

1.0¢
0.8 o @ o
...o.o
O.E: o @ o
04 o @ o
| oo o
0.2
s i a o @ o
X
5 10 15 20 R5 30

Figure 2: Initial distribution of the smaller sub-charges (blue dots). Please note that
the sub-charges (blue dots) are plotted with four times their actual values to
better set them in visual context with the original charges (red dots).

(3) This third step, if applied repeatedly, ensures that the discrete second derivative
of the final distribution becomes constant. First, we randomly select a sub-charge
q;, excluding charges on the rightmost border of a cell from this selection process
(i.e. excluding charges where i + 1 is a multiple of N). We now want to find a
value Ag by which we modify ¢; — ¢ and gi+1 — ¢}, as follows:

4 =aq —Aq (1)
Gip1 = Git1 + Ag (2)

This leaves the total charge in the cell unchanged.

After repeating this third step often enough, we want the discrete second derivative
of the final distribution to be constant. Therefore, we expect that the gradient
-2 will eventually become the mean value of the left-side gradient #—Z~% and

: : comp dit2—Git1
the right-side gradient 21+

alit" o™ 1 (f -l oy —qﬁ?“> &)

Ax 2 +

Ax Ax

As we don’t know the final values for all ¢;’s yet, we have to use the following
iterative equation in each iteration step instead:

Az 2

+

G —q; 1 (Qi — Qi1 | Git2 — Qi+1) ()
Ax Ax

All sub-charges ¢; are evenly distributed along the x-axes, therefore we can multiply
equation (4) with Az and get

1
Qi1 — @ = B (% — Gi—1 + Git2 — Git1) (5)
Inserting (1) and (2) on the left hand side of equation (5) leads to

1
Gir1+Aqg—q +Agq= 3 (¢i — Gi—1 + Gi+2 — Gi+1) (6)

which can eventually be transformed into

Gi+2 — 3qi+1 + 3¢ — qi—
Ag— +2 +14 1 (7)

We use this Ag to modify charges ¢; and ¢;1+1 as shown in equation (1) and (2).

This whole step (3) is to be repeated until equation (3) is fulfilled for all ¢; within
the required margin, except for the case when ¢; is the rightmost charge in a cell,
and also except for all ¢; withi=1,i= N —1ori= N, as we don’t have charges
qo, qN+1 Or gn2 available to insert into formula (7).

This last step, if applied repeatedly, ensures that the discrete fourth derivative of
the final distribution becomes constant. As before, we start by randomly selecting
a sub-charge ¢;, excluding charges on the rightmost border of a cell from this se-
lection process. And, again we want to find a value Ag by which to modify ¢; — ¢/
and gj+1 — ¢j,; as shown in equations (1) and (2), thereby leaving the total charge
in a cell always unchanged.

After repeating this last step often enough, we want the discrete fourth derivative

of the final distribution to be constant. Therefore, we expect that the third order
3)
i

order finite difference (52@1 and the right-side third order finite difference 5§_‘?1:

finite difference §;” will eventually become the mean value of the left-side third

3) final 1 3final 3) final
sl = = (a2 4) (8)

The third order final difference is defined as

3
6@-(3) = (1) * (Z) qi—1+k (9)

k=0

which can be resolved into

3
52() — Qi+2 — 3Gi+1 + 3¢ — Gi—1 (10)
By inserting this into equation (8), we get
_ Git3 — 3¢it2 + 3¢i+1 — ¢ + Git1 — 3¢ +3¢i—1 — Gi—2

Giv2 — 3qi+1 + 3¢ — qi—1 = 5 (11)

Again, this is the set of equations for the final solution. However, as we don’t know
the final values for all ¢;’s yet, we have to use the following iterative equation for
any randomly chosen charge ¢; and its neighbor g; 1 in each iteration step instead:

 Qiy3 — 32 +3¢iy1 — G+ Gir1 — 3¢ +3¢i—1 — qi—2)

Gi+2 = 3¢ + 3¢ — i1 = 5 (12)
Inserting (1) and (2) on the left hand side of equation (12) leads to
Gi+2 — 3 (Gi+1 + Ag) +3 (g — Ag) — g1 =
Qi+3 — 3Gi+2 + 3¢it1 — ¢ + Qiv1 — 3Gi + 3¢i-1 — ¢i—2) (13)
2
which can eventually be transformed into
Ag— B2~ 5¢i—1 + 10¢; — 10¢i+1 + 5¢i+2 — Gi+3 (14)

12

We use this Ag to modify charges ¢; and g;+1 as shown in equation (1) and (2).

This whole step (4) is to be repeated until equation (11) is fulfilled for all ¢; within
the required margin, except for the case when ¢; is the rightmost charge in a cell,
and also except for all ¢ < 3 or ¢ > N — 3, as we don’t have charges q_1, qo, gN+1,
gN+2 Or gn+3 available to insert into formula (14).

2.1.2 Implementation in Python

Appendix 6.1 shows our Python 3.6 implementation of the algorithm explained in the
previous chapter. All source code line references in this chapter refer to that listing,.

We used our implementation to generate 2,000,000 records of training data (defined in
line 8), each record representing 8 original (coarse) random charges (defined in line 10) as
training input for a neural network. Each original charge is then split into 4 sub-charges
(defined in line 11), so that the resulting output consists of 32 smoothly distributed
charges representing a target configuration to which the neural network is to be trained.

chrg_generator(n)

Generator chrg_generator(n) (lines 15-40) returns n training data sets, each contain-
ing 8 original (coarse) random charges, and 32 corresponding refined charges. Refined
charges are initialized to have the same value as the original charge in the same cell (line
24), which means that the division by 4 has been skipped in order to ensure that both
original and refined have the same magnitude between 0 and 1 (with refined charges
occasionally having values slightly below 0 or above 1).

Line 27-32: The first refinement step (ensuring that the discrete second derivative be-
comes constant) is performed 50 times (each time on a randomly chosen charge), before
the maximum deviation is checked. This step is repeated until all charges are within the
chosen absolute deviation of 2.5 - 1075 (as defined in line 13).

Line 34-39: The second refinement step (ensuring that the discrete fourth derivative
becomes constant) is handled in the same way.

deviationOK(q, step)

Lines 41-51: Function deviationOK(q, step) receives an array q of refined charges,
and returns true, if all charges are within the chosen deviation, i.e.: if all Aq by which
the charges should be readjusted are smaller than maxErr. The second parameter step
defines whether the deviation is to be checked with regards to the first or the second
refinement step.

refine(chrg, step, i=-1)

Lines 53-68: Function refine(chrg, step, i=-1) receives an array chrg of to-be-
refined charges. If parameter i is passed to the function, then the i-th and (i 4+ 1)-th
charge is adjusted by Agq. If parameter i is not passed, a charge in array chrg will be
randomly chosen. If the charge defined by i, or the randomly chosen charge, happens
to be the rightmost charge in a cell, then there are no modifications. This is ensured,
because function dq(chrg, i, step), representing Ag, returns zero in such cases (and

10

also in case where the charge in question happens to be a boundary charge not captured
by the algorithm). Parameter step defines whether the refinement is to be done with
respect to the first or the second refinement.

dq_func(chrg, i, step)

Lines 70-97: Function dq_func(chrg, i, step) corresponds to Aq in the refinement
algorithm. In its first parameter, it receives an array chrg of to-be-refined charges. The
second parameter i defines which charge in the array (together with the neighboring
charge i + 1) is to be modified. The last parameter step defines, whether Agq is to be
calculated with regards to the first or the second refinement step. If i defines a rightmost
charge in a cell (line 82), or a boundary charge not captured by the algorithm (line 87
and line 93), then zero is returned.

Main Program

In lines 104-114, arrays train_data and train_targets are filled with random (coarse)
charge distributions and corresponding refined charge distributions produced by gener-
ator chrg_generator(n). Progress information is printed every 100 generated records.

In lines 116-122, the refined charges are re-scaled so that the re-scaled values never leave
the range between 0 and 1, in order to match a typical value range for many neural
networks’s output layer.

In line 124-138, the generated data is stored into two files train_data.pkl and
train_targets.pkl.

2.2 Exploration of Multiple Deep Learning Configurations

2.2.1 Implementation in Python

After having created the training data, we implemented the "Charge Refine Deep Learn-
ing Explorer", which is a piece of software for testing various Deep Learning models
against this training set. The Python 3.6 source code, utilizing Keras 2.2.4, is listed in
Appendix 6.2. All source code line references in this chapter refer to that listing.

11

Network Parameter Definition

In lines 14-20, some general network (meta-)parameters are defined, namely

e trainSetSize=1500000 ... defines the number of records from the created training
set used for actually training the network

e trainSetSize=300000 ... defines the number of records from the created training
set used for validating the network after each epoch

e testSetSize=200000 ... defines the number of records from the created training
set used for testing the accuracy of the fully trained network.

e bSize=5000 ... in Keras, the batch size is the number of training examples in
one forward/backward pass, i.e. the number of samples to work through before
the internal model parameters are updated. The higher the batch size, the more
memory space is needed.

e myoptimizer=’rmsprop’ ... this defines the optimizer by which the network’s
weights are updated during the training phase. The selected optimizer uses "Root
Mean Square Propagation”, which is very commonly used and combines the the
concepts of exponential moving average of the past gradients and adapting learning
rate.

e maxepochs=2000 ... The number of epochs defines the number times that the
learning algorithm will work through the entire training dataset. This parameter
defines that training should stop after 2000 epochs at the latest.

e mypat=200 ... This defines the number of epochs after which training will be
stopped prematurely if there is no further improvement.

Physics Parameter Definition

In lines 22-23, the parameters of the physics problem are defined, namely:

e numCells=8 ...This defines the number of Wigner-Seitz-cells), i.e. the number of
(coarse) original charges in the training data set.

e pointsPerCell=4 ...This defines the number of (refined) sub-charges each original
(coarse) charge has been split into in the training data set.

12

createModel(nhl, nh2, nh3, nactfunc, actfuncin=True, actfuncout=False)

Lines 31-77: This function creates and returns a dense deep learning model with up
to three hidden layers. The size of the input layer is unchangeable and defined by the
number of original charges numCells=8. Also, the size of the output layer is fixed at
numCells*pointsPerCell (which is 32, in our case). However, the number and size of
hidden layers is flexible and can be defined by passing parameters nh1, nh2, nh3 (defining
the number of neurons in hidden layer 1, 2 and 3).

Parameter nactfunc may take on values between 0 and 10 and defines the network’s
activation function (line 35-56). Parameter actfuncin is boolean (default: True), and
defines whether the chosen activation function is also applied to the input layer (if it
is False, then the input layer always has just a linear activation function). Boolean
parameter actfuncout (default: False) does the same with the output layer.

plotToFile(history, round, step)

Lines 80-105: This function expects a History object as returned by Keras’ mode.fit
method, and plots a graph of the training progress (training and validation loss) into a
file. The integer parameter round just influences the file name (line 102), and reflects
what number model has been tested. Finally, the integer parameter step may take on
values between 1 and 4. If it is 1, then the whole curve is plotted. If it is 2, 3 or 4, then
the first 10, 40, or 150 data points are skipped in the graphic.

MAIN PROGRAM

The main program starts at line 107. In lines 115-128, the complete training data set is
loaded from the file. In line 130-140, the data set is split between actual training data,
validation data and test data.

In lines 142-160, a log file is created, containing a header with general parameter infor-
mation, and a headline for the information in the lines to come.

In lines 162-176, the number and type of the models to be tested are defined. The pa-
rameters are the same as in createModel(...), namely nh1l, nh2, nh3 as the number of
neurons in hidden layers 1, 2 and 3 (zero for no layer), and nactfunc, actfuncin, and
actfuncout to define which activation function to be used on what layers.

In lines 178-228, the actual simulations are executed, with the main loop starting in line
191. One by one, each model with parameters as defined before, is generated (line 195),
compiled (lines 196-197) and trained (lines 199-202). After that, the model is scored
against the test data set (line 205), and information is printed on screen and written to
the log file (lines 206-228). Eventually, in lines 230-236, graphs of the training progress
are plotted into files.

13

2.2.2 Results

In the first experiment, we ran multiple simulations with 1, 2 and 3 hidden layers, where
the number of neurons in these layers were permutations of 4, 8, 16, 32, 64 and 128. In
all these simulations we used the sigmoid activation function.

It turned out that all these networks could be trained to learn the training set, with mean
absolute errors between 0.12 and 0.08 in less than 90 epochs (the patience parameter
was set to 6 as to allow the simulations to end quickly for a fast screening of the various
architectures). As expected, networks having a layer with just 4 neurons performed
generally below average. Also, networks with one or two hidden layers performed better
on average than networks with three hidden layers. It was also interesting that we never
observed any overfitting.

In follow-up experiments we continued testing with network architectures that have
proven to be above average in the first run. We increased the number of epochs (by
setting the patience parameter gradually to higher values), and we also varied the
activation function. It turned out that from all non-linear activation functions, the
tanh-function performed best, followed by sigmoid, hard_sigmoid, and elu. With all
other nonlinear activation functions the training results were non-satisfactory with the
given architectures. Also, networks where input- and output layers did not have an
activation function (i.e. had a linear activation function) performed better on average.

Training and Validation Loss

0.030 + ® Training loss

—— Validation loss
0.025 A

0.020 A

0.015 4

mean absolute error

0.010 A

0.005 A

250 500 750 1000 1250 1500 1750 2000
epochs

Figure 3: Training and validation loss (mean absolute error) development while train-

ing a dense deep network with 8-16-32-16-32 neurons and sigmoid activation
function over 2000 epochs.

14

In these experiments, a tanh-network with two hidden layers having 128 and 16 neu-
rons, trained over 101 epochs, achieved the best mean average error of 0.004. However, a
much simpler tanh-network with just one hidden layer with 8 neurons performed almost
equally well with a mean average error 0.0052.

Although they are supposedly a core ingredient of deep learning architectures (see e.g.
[Goodfellow et al, 2016, p. 167])), we eventually decided to train networks where we have
abandoned all non-linear activation functions in favor of the linear activation function.
We also allowed for a network without any hidden layer. From all these networks, the
most simple network, consisting of just 8 input and 32 output neurons (no hidden layers)
performed best after being trained over 2000 epochs, reaching a mean average error on
the test data of just 0.0011 (see Figure 4).

Training and Validation Loss

® Training loss
0.005 1 —— Validation loss
S
£ 0.004 A
]
3
©
8 0.003 -
©
C
©
(0]
€ 0.002 1
0.001 1

0 250 500 750 1000 1250 1500 1750 2000
epochs

Figure 4: Training and validation loss (mean absolute error) development while training

a dense network with 8 input and 32 output neurons (no hidden layers) and
linear activation function over 2000 epochs.

15

3 The Linear Algebra Approach

3.1 From Deep Learning to Linear Algebra

Obviously, because of the linear activation function, the network from Figure (4), having
just an 8-neuron input layer and a densely connected 32-neuron output layer, can be
expressed in a simple vector/matrix equation.

Let Q be the 8 x 1 input vector of (coarse) original charges. The first layer of the trained
network can be represented by a 8 x 8 weight matrix Wi and a 8 x 1 bias vector by, so
that the 8 x 1 output vector o7 of the first layer can be written as

o =WiG +b (15)

Let ¢’ be the to-be-calculated 32 x 1 vector of refined small charges. We want this vector
to be the output of the second layer. Like the first layer, the second layer of the trained
network can be represented by a 32 x 8 weight matrix W2 and a 32 x 1 bias vector bo.
As the output vector &) of the first layer is the input vector of the second layer, we can
write

q = Wso1 + b (16)

By substituting 67 with the result from equation (15), we finally get

7=Wa (W2G +b1) + b (17)

Considering that the split charges in the training dataset were not divided by 4, and
further considering that the training dataset is re-sized (see source code lines 115-121 on
page 69), the correct final formula is

0.5
7= |2(We (MG +5) +52) - : (18)

16

These are the actual matrices and vectors as retrieved from a trained network (rounded
to five digits after the decimal point):

—0.23201 —0.09500 —0.18980 —0.20857 —0.13743 —0.24721 —0.24588 —0.11497
0.83026 0.49651 —0.41574 —0.79812 0.18860 —0.10128 0.24538 —0.51374
0.81205 —0.35277 —0.01770 0.67868 0.02250 —0.03245 —0.89922 —0.43290
0.09440 —0.78898 —0.50042 0.31114 0.57818 —0.56365 0.67051 —0.07993

W, = 0.11048 —0.67576 —0.00760 —0.25418 —0.47597 0.71256 0.18709 —0.23155
—0.63754 0.13760 0.17649 0.03006 0.78638 0.45352 —0.10451 —0.99403

0.08440 —0.10035 0.95792 0.00775 —0.44585 —0.61243 0.42449 —0.57333

0.17292 —0.50736 0.67976 —0.76484 0.68332 —0.06788 —0.45818 0.48310

—0.37280 0.20164 0.17900 0.01525 0.02771 —0.13803 0.01954 0.04117
—0.39945 0.20787 0.21252 0.04556 0.07320 —0.15716 0.03436 0.07578
—0.38700 0.20508 0.19449 0.03114 0.05230 —0.14704 0.02970 0.06403
—0.33200 0.19186 0.12743 —0.03208 —0.04342 —0.10714 —0.00616 —0.01223
—0.25288 0.16871 0.02983 —0.12346 —0.18045 —0.04828 —0.05468 —0.12227
—0.19000 0.13716 —0.06000 —0.20229 —0.28451 0.01296 —0.06831 —0.17996
—0.16642 0.09801 —0.11750 —0.24235 —0.31373 0.05563 —0.02421 —0.14796
—0.18825 0.05178 —0.13084 —0.23736 —0.25991 0.07827 0.07031 —0.03150
—0.24450 —0.00152 —0.10079 —0.19346 —0.14884 0.07750 0.18644 0.11941
—0.30716 —0.06332 —0.04195 —0.13948 —0.03869 0.05886 0.26547 0.21186
—-0.35718 —0.12917 0.03078 —0.09094 0.03198 0.02960 0.27786 0.19741
—0.38375 —0.19150 0.10322 —0.05402 0.04701 —0.00189 0.21986 0.08051
—0.38359 —0.23216 0.15648 —0.02019 0.00501 —0.02153 0.11643 —0.08960
—0.36382 —0.23266 0.17641 0.02562 —0.07015 —0.01709 0.01529 —0.21039
—0.33096 —0.18771 0.15776 0.08793 —0.15578 0.01560 —0.05169 —0.22978

W — —0.29522 —0.10675 0.10781 0.15693 —0.22899 0.07162 —0.07780 —0.14076

—0.26624 —0.01268 0.04364 0.20845 —0.26644 0.13593 —0.07638 0.01891
—0.25416 0.05250 —0.00209 0.20545 —0.24131 0.18271 —0.08259 0.16049
—0.26392 0.07117 —0.01775 0.13709 —0.15036 0.20022 —0.11219 0.23114
—0.29488 0.04434 —0.00560 0.01877 —0.00947 0.18593 —0.16472 0.21775
—0.34080 —0.00661 0.01843 —0.10938 0.14731 0.14910 —0.21340 0.12960
—0.38976 —0.04036 0.01966 —0.17844 0.26496 0.11097 —0.21785 0.02027
—0.43159 —0.03668 —0.01548 —0.15817 0.31318 0.08145 —0.16128 —0.07587
—0.45845 0.00338 —0.08588 —0.05457 0.28565 0.06325 —0.05388 —0.13660
—0.46171 0.05988 —0.16880 0.08889 0.20170 0.04714 0.06781 —0.15345
—0.43672 0.08876 —0.22419 0.19112 0.10253 0.01579 0.13800 —0.13051
—0.38573 0.06980 —0.23377 0.20978 0.01723 —0.03767 0.12797 —0.07540
—0.31756 0.00571 —0.19674 0.14598 —0.04022 —0.10870 0.04075 —0.00368
—0.24792 —0.07773 —0.13403 0.03791 —-0.07191 —0.18034 —0.08090 0.06675
—0.20141 —0.13685 —0.08937 —0.03926 —0.08809 —0.22960 —0.16495 0.11670
—0.18958 —0.14830 —0.08119 —0.05286 —0.09633 —0.24031 —0.18200 0.13125
—0.21283 —-0.12134 —-0.10137 —0.01810 —0.08507 —0.21727 —0.14212 0.10492

17

0.34976
0.33894
0.34399
0.36639
0.39867
0.42439
0.43396
0.42489
0.40172
0.37605
0.35625
0.34669

0.33668 0.34708

0.03266 0.35531

0.11375 0.36727

0.14340 0.38109

0.32480 0.39280

0.07632 0.39767

0.13475 0.39366
—0.11565 0.38103
0.36234
0.34247
0.32567
0.31617
0.31504
0.32510
0.34581
0.37331
0.40058
0.41935
0.42426
0.41460

S
I

S
I

Please note that the matrices and vectors printed above are not a unique, reproducible
solution. Whenever re-trained, the network ends up with significantly different weight-
matrices and bias vectors. This is a clear indication for the structure of this solution to
be still redundant, and the exact linear solution to be even simpler.

3.2 The Exact Linear Solution

3.2.1 Exact Solution for Constant Second Derivative

Let us consider a very simple toy-problem where 3 coarse original charges @1, Q2, Q3
are to be split into 4 sub-charges each, thereby producing charges ¢ ---qi2, so that
the discrete second derivative of the final charge distribution ¢; - - - g12 becomes constant
within each Wigner-Seitz cell (see Fig. 5).

18

10!
98| J5e
d6!
d4! 44
od1 .Q1
°q3

[]
G2 @

2 4

q7

6 8

G100 @
°

Figure 5: An exemplary toy-problem: 3 original charges Q1,Q2, Q3 (red dots) are to
be split into 4 sub-charges each, so that the discrete second derivative of the
final charge distribution ¢ - - - g2 (blue dots) becomes constant within each
Wigner-Seitz cell (green separation lines).

Considering formula (3), and further considering that under the algorithm explained in
chapter 2.1.1 it is not allowed to simultaneously modify the rightmost charge g; of a
cell and the leftmost charge g;+1 of the neighboring cell, we can already write down the
following (yet under-defined) system of equations:

43 —q2 =
q4 —4q3 =
g6 — (g5 =
qr —q4e =
g8 —qr =
qi0 —q9 =
qi1 — qio =

1
5((14 —q +q —q)
1
5(% —qs +q3 —q2)
1
5((17 —q +a5 —qa)
1
§(q8 —qr +dq6 —qs)
1
5((19 —qs +qr —qe)
1
E(Q11—Q10+QQ —gg)
1
5 (q12 — q11 + q10 — Qo)

19

These equations can be re-written as

1 3 3 1

50— 5% + o — 54 = 0

1 3 3 1

EQQ - 5(13 + 5Q4 - 5Q5 =0

1 3 3 1

5(]4 - §Q5 + 5(]6 - 5(]7 =0

%QS - g% + §Q7 - %QS =0 (20)
1 3 3 1

5%‘*5117 +§QB *5% =0

o33 1
2q8 2q9 2qu 2(]11 -

108, 8 L
2(19 2qu 2(]11 2(112 —

Throwing in the condition that, within each Wigner-Seitz cell, the sum of small charges
must equal the original charge in this cell, we get three more equations:

ga+q +q +q =Q1
g5 +¢qs +q7 +g8 =Q2 (21)
Q9+ qio+qi1 + q12 = Q3

To make the system of equations complete, we need two more equations. These are
provided by the initial value of the leftmost and rightmost charge (see step (2) of the
algorithm in chapter 2.1.1):

1
@ =-Q
1 4 1 (22)

1
qi2 = ZQs

The complete system of linear equations (20), (21) and (22) can be represented in the
following single matrix/vector equation:

Q1 1 1 1 @
Q
T ! e
1 _3 3 _1
0 2 2 2 2 q3
1 _3 3 _1
0 2 2 2 p) q4
Q2 1 1 1 1 as
1 3 3 1
0 _ 3 T3 3 ~3 6 (23)
= 1 3 3 1
0 3 "% 3 —3 ar
1 3 3 1

0 3 —2 5 —3z as
Q3 1 1 1 1 q9
0 1 _3 3 _1

2 2 2 2 a10
0 1 _3 3 _1 q11

2 2 2 2

Q3 1 q12
4 L .

In (23), all entries corresponding to the three equations in (21) are printed in red, and
all entries corresponding to the two equations in (22) are printed in blue. All remaining
entries in black color reflect the eight equations from (20).

20

If we call the matrix in equation (23) matrix A, then the solution we are looking for can
be written as

q1
q2
qs3
qa
qs
g6 =A
qr =
qs

q9

q10
q11
q12

==

(24)

|
_
soo o@ooo@ooa@@

Below is the inverse matrix é_l, as explicitly calculated for our example:

— 1 .
1047 91 _ 1229 880 _2 364 8 200 30 60 40 __50
3854 1927 1927 1927 a7 1927 a1 1927 1927 1927 1927 1927
1487 _ 918 349 _ 440 1 182 4 100 15 __30 _ 20 _ 25
3854 1927 1927 1927 7 1927 a1 1927 1927 1927 1927 1927
660 _ 1100 880 1320 3 546 _ 12 _ 300 _ .45 90 60 75
1927 1927 1927 1927 a7 1927 a1 1927 1927 1927 1927 1927
273 455 364 546 10 1820 _ 40 _ 1000 _ 150 300 200 250
1927 1927 1927 1927 a7 1927 a1 1927 1927 1927 1927 1927

9 15 12 18 27 _ _60 _ 27 _ 880 _ 132 264 176 220
1927 1927 1927 1927 94 1927 a1 1927 1927 1927 1927 1927 25
_ 132 220 _ 176 _ 264 27 880 27 60 9 _ 18 _ 12 15
1927 1927 1927 1927 94 1927 a1 1927 1927 1927 1927 1927
_ 150 250 _ 200 _ 300 10 1000 40 1820 273 _ 546 364 _ 455
1927 1927 1927 1927 a7 1927 a1 1927 1927 1927 1927 1927
__45 75 __60 _ 90 3 300 12 546 660 _ 1320 880 1100
1927 1927 1927 1927 a7 1927 i1 1927 2 1927 1927 1927
15 _ 25 20 30 1 _ 100 _ 4 182 1487 440 349 _ 918
1927 1927 1927 1927 a7 1927 i1 1927 3854 1927 1927 1927
30 50 40 60 2 200 _ 8 _ 364 1 880 1229 91
1927 1927 1927 1927 a7 1927 a1 1927 3854 1927 1927 1927
1

However, it would be much more elegant, and also more compact, to write the solution
in the form of a 12 x 3 matrix M; so that

q1
q2
q3
q4

g5 O
ol =m| Q (26)

ar =
a5 Qs

q9

q10
qi1
q12

Matrix M; can easily be derived from solution (24) and (25). When setting Q1 = 1,
Q2 = 0, and Q3 = 0, (24) returns a vector representing the first column of matrix M.
Similarly, setting @ = 0, Q2 = 1, and Q3 = 0 produces the second column of matrix
Mi; and when we set Q1 = 0, Q2 = 0, and Q3 = 1 we get the third column of matrix M;.

21

The final and most compact solution with regards to our special-case problem can there-
fore be written as:

_ 1 -
q1 b
2185 2 35
2 2185 2
q 7708 a7 3854
. 514 1 35
a3 1927 47 7708
385 3 105
qa 1927 47 7708
qs 637 10 175
7708 a7 3854 Q1
g6 21 27 77
7708 94 1927 Q)
frg 2
qr _ 77 27 21 (27
1927 94 7708 Qs
qs 175 10 637
3854 a7 7708
105 3 385
9 — =9 2 209
4 7708 a7 1927
35 1 514
1 _ 1
aio 7708 a7 1927
35 2 2185
qu 3854 47 7708
1
q12 L i |

Based on this descriptive toy-example, we can now easily deduct the algorithm for a
general M; matrix of arbitrary size:

(1)

Let @Q; be the single original charge in the j-th Wigner-Seitz cell, and j,q, the
total number of cells. Further, let n be the number of (smaller) sub-charges to
be created for each original charge ;. Then m = njyq, is the total number of
smaller sub-charges q; ...¢m,. In the first step, we generate a Matrix A of size

m x m with elements a; ;, and we set all matrix elements a; ; = 0.

In each (kn + 1)-th line of matrix A (with k& € Nx¢), we set agpi1int1 = 1,
kn+1kn+2 = 1, Gknt1knts = 1, and agp41 knta = 1 (this corresponds to the red
entries in equation (23)).

We then set the first entry in the second line az; = 1 and the bottom-right entry
@m,m = 1 (this corresponds to the blue entries in equation (23)).

N9V

In all lines 7 hitherto not yet modified, we set a;;—2 = %, i1 = —%, ai; = 3,
and a;;11 = —3 (this corresponds to the black entries in equation (23)).

We calculate A~! by inverting matrix A.

We generate a row-vector Cj with m lines, and we set all entries to zero, except for
every (kn + 1)-th entry (with & € N>(), which we define to be Q+1. Additionally,
we define the second entry to be %, and the last entry to be %

Let m; be the j-th column of matrix M;. We create Matrix M; by calculating all

columns m; according to the following rule: mi; = é_IQ\Qizl if i=j else 0

22

3.2.2 Exact Solution for Constant Fourth Derivative

Let us stick with our exemplary toy-problem: Let there be still 3 coarse original charges
Q1,Q2, Q3 to be split into 4 sub-charges each. But now, we want the discrete fourth
derivative of the final charge distribution ¢;---qi2 to become constant within each
Wigner-Seitz cell (see Fig. 5).

Considering formula (11), and further considering that under the algorithm explained
in chapter 2.1.1 it is not allowed to simultaneously modify the rightmost charge ¢; of a
cell and the leftmost charge g;+1 of the neighboring cell, we can again write down a yet
under-defined system of equations:

g5 —3q4 +3¢s—q2==(g6 —3¢5 +3q4 —¢qs +q —3¢s +3q¢2—q1)

— N =

qr —3¢s +3¢s —qs=5(gs —3g7 +3¢6 — g5 +q6 —3g5 +3qa — q3)

gs —3qr +3¢6—q5 == (90 —3gs +3q7 — g6 +qr — 3¢5 + 3¢5 — qa) (28)

go —3gs +3q7—¢qs = = (qu0 —3g9 +3¢s —qr +qo —3gs + 3q7 — gs)

N NN

qi1 — 310 +3g9 — qs = 5 (q12 — 3q11 +3q10 — g9 + q11 — 3q10 + 399 — gs)

This can be re-written as

%lh - ng +5g3 — 5qa + gq5 - %% =0
%% - qux +5¢5 — 5g6 + gq7 - %qs =0
%(M - g% +5¢6 — 5q7 + gqs - %qg =0 (29)
%QS - g% + 597 — 5¢8 + gqg — %mo =0
%Q7 - gqg + 5q9 — 5q10 + gqu - %IhQ =0

Again, within each Wigner-Seitz cell, the sum of small charges must equal the original
charge in this cell. We therefore can add three more equations to the system:

Ga+q +q +qg =Q1
gs+q6 +qr +qs = Q2 (30)
go+qio+qu1 +q12 = Q3

The value of the leftmost and rightmost charge will not be changed by the algorithm
described in chapter 2.1.1, and therefore remains at the initial value of a quarter of the
respective original charge, which gives us two more equations:

@ = 1Ql
(31)

qi2 = -3

(e N

23

We are still two equations short of getting a solvable system of equations. This is
because not only the leftmost charge ¢; and the rightmost charge g2, but also the
second-from-left charge g2, and second-from-right charge g1 cannot be modified by the
constant-fourth-derivative-algorithm.

However, the original algorithm as described in chapter 2.1.1 first aligns all sub-charges
q; so that the second derivative becomes constant, before it continues to align the charges
with respect to the fourth derivative. We want the method we are just developing to
produce the same result as this algorithm. Therefore, the second-from-left charge g2, and
second-from-right charge ¢11 should be aligned in accordance with matrix M;. Hence,
we can read the missing two equations directly from the second and eleventh line of
matrix M; in equation (27):

2185 35

4 7708Ql - *Q2 + 3529 (32)
o 2185

= 3854 ! 7708

The now complete system of linear equations (29), (30), (31), and (32) can be represented
by the following single matrix/vector equation:

Q1 r 1 11 1 b q1
< 1 a2
Q1 - 202 + 585Q L as
0 R T T s
Qs 1 1 1 1 a5
0 3 -3 5 5 5 =3 a6
0 5 -3 5 -5 8 -3 ar
0 : -3 5 =5 2 -1 a8
Qs 1 11 1 q9
7 0 » i -3 5 -5 2 -1 q10
85 Q1 %(33 ’:"l‘\"\'(j; 1 q11
Q3 1 q12
= d

(33)

In (33), all entries corresponding to the three equations in (30) are printed in red, all
entries corresponding to the two equations in (31) are printed in blue, and all entries
corresponding to the two equations in (32) are printed in brown. All remaining entries
in black color reflect the five equations from (29).

If we call the matrix in equation (33) matrix B, then then the solution we are looking
for can be written as

24

q1
q2
qs3
q4
g5
ge
qr
qs
q9
q10
qi1
q12

I
Il

Q1

@1

4
Hos @1 — %7(?2 + 5531 Q3
Q2
0
0
0

Qs
0

(34)

35 2 2185
3511 — %Q2 + T0s @3
Q3

4

This is the inverse matrix éil, explicitly calculated and written out for our example:

1
1

12557 _ 14489 _ 2897 1932
30134 30134 30134 15067
17577 _ 15645 _ 27237 _ 1932
30134 30134 30134 15067
20251 _ 16765 _ 37681 _ 1743
60268 60268 60268 15067
45 _ 23 _ 155 _ 11
3172 3172 3172 793
_ 565 465 1065 50
3172 3172 3172 793
_ 10371 8367 20391 1002
60268 60268 60268 15067
_ 514 825 2043 203
15067 30134 30134 15067
514 _ 825 _ 2043 _ 203
15067 30134 30134 15067

1743 _ 32 _ 1002 514 203 2043 825
15067 247 15067 15067 15067 30134 30134
1743 2 1002 _ 514 _ 203 2043 825
15067 247 15067 15067 15067 30134 30134
14609 147 9669 _ 10371 _ 1002 20391 8367
30134 247 30134 60268 15067 60268 60268
175 5 435 _ 565 _ 50 1065 465
1586 13 1586 3172 793 3172 3172
435 _ 5 _ 175 45 11 __ 155 23
1586 i3 1586 3172 793 3172 3172
966 _ 147 _ 14609 20251 1743 _ 37681 _ 16765
30134 247 30134 60268 15067 60268 60268
1002 _ 32 _ 1743 17577 1932 _ 27237 _ 15645
15067 247 15067 30134 15067 30134 30134
1002 32 1743 12557 _ 1932 _ 2897 _ 14489
15067 247 15067 30134 15067 30134 30134
1
1

Again, we would like to formulate a more compact solution in form of a 12 x 3 matrix

& so that

q1
q2
q3
q4
qs
g6
qr
qs
q9
qi10
q11
q12

Q1
Q3

This matrix My can be derived from solution (34) and (35). When setting Q; = 1,
Q2 =0, and Q3 = 0, (34) returns a vector representing the first column of matrix M.
Similarly, setting Q1 = 0, Q2 = 1, and @3 = 0 produces the second column of matrix
My; and when we set Q1 = 0, Q2 = 0, and 3 = 1 we get the third column of matrix My.

25

Hence, the final and most compact solution with regards to our special-case problem can

be written as:

¢ i
2185 2 35
qz 7708 a7 3854
) 31198049 74 208413
a3 116136436 2867 29034109
22082883 196 944171
44 116136436 2867 58068218
21441469 2349 10949897
a5 232272872 11468 232272872
19207 3385 571395 Q1
de 12224888 11468 12224888
= 571395 3385 19207 Q2 (37)
qr 12224888 11468 12224888 0
10949897 2349 21441469 3
as 232272872 11468 232272872
944171 196 22982883
49 58068218 2867 116136436
208413 74 31198049
q10 29034109 2867 116136436
35 2 2185
Q11 3854 a7 7708
1
q12 L 4 J

Based on this descriptive toy-example, we can now easily
general My matrix of arbitrary size:

deduct the algorithm for a

(1) Let @; be the single original charge in the j-th Wigner-Seitz cell and jpq, the

(7)

total number of cells. Further, let n be the number of (smaller) sub-charges to
be created for each original charge ;. Then m = njpq, is the total number of
smaller sub-charges qi ... gy,. In the first step, we calculate matrix M; as explained
in chapter 3.2.1. o

Then, we generate a Matrix B of size m x m with elements b; ;, and we set all

matrix elements b; ; = 0.

In each (kn + 1)-th line of matrix B (with k& € Nxg), we set bgpi1pnt1 = 1,
bint1kn+2 = 1, bgnt1knts = 1, and bgpi1 gnra = 1 (this corresponds to the red
entries in the matrix equation (33)).

We then set the first entry in the second line by ;1 = 1 and the bottom-right entry
bm.m = 1 (this corresponds to the blue entries in the matrix equation (33)).

We also set b3 = 1 and by,—1,m—1 = 1 (this corresponds to the brown entries in
the matrix equation (33)).

In all lines 4 hitherto not yet modified, we set b; ;3 = %, bii—2 = —%, bii—1 =5,
bii = =5, bjit1 = %, and b; i1 = —% (this corresponds to the black entries in the
matrix equation (33)).

We calculate B~! by inverting matrix B.

26

(8) We generate a row-vector Q with jme: /N lines, and we set all entries to zero,
except for every (kn + 1)-th entry (with £ € N>¢), which we define to be Q1.
Additionally, we define the second entry to be %, and the last entry to be Qimaa

n .

(9) We calculate G2 and Gn,—; from the following equation, leaving @1 ... Qj,... as
abstract variables.

q1

G2 Q1

: =M | : (38)
(jmfl Qjma:c

Gm

Then, we set the third entry of the previously generated row-vector @ to be o,
and the second last entry to be ¢,_1.

(10) Let 1m; be the j-th column of matrix My. We create Matrix M by calculating all

columns m; according to the following rule: mi; = 2_1@@:1 if i=j else 0

3.3 Implementation in C++

We implemented the algorithm presented in chapter 3.2 in an easy-to-use, encapsulated
C++ class. The complete source code listing can be found in Appendix 6.3.

All functionality is encapsulated in class clsChargeDistr. The number of original
(coarse) charges Q1 ...Qy, and the so-called "split-factor" n (i.e. the number of sub-
charges to be created for each original charge) can already be passed to the class con-
structor, which then calculates matrices M7 and M> as described in chapter 3.2.

The values of the original charges @ ... Q, can be passed to the class instance either by
means of an C++ array of type double, or by a vector<double> object. Alternatively,
each charge value (); can be set individually.

Similarly, the set of refined charges ¢ ... ¢, can also be read out by means of an C++

array of type double, or in a vector<double> object. Alternatively, each refined sub-
charge value ¢; can be read out individually.

27

10

15

20

25

30

35

40

45

3.3.1 Passing and Retrieving Charges in C++4 Arrays

The following source code listing shows how to pass original charge values to and get
refined charge values from the class instance by means of C++ arrays of type double:

#include <iostream>
#include "clsChargeDistr.h"

using namespace std;
int main(int argc, char xargv([])

double ChargeArr [8];

ChargeArr [0] = 0.13714240;
ChargeArr [1] = 0.63355233;
ChargeArr [2] = 0.66643012;
ChargeArr [3] = 0.41865784;
ChargeArr [4] = 0.57789615;
ChargeArr [5] = 0.79494448;
ChargeArr [6] = 0.25404124;
ChargeArr [7] = 0.17435211;
clsChargeDistr chargeRefiner (8, 4); // init: 8 charges to be divided into 4 subcharges each
chargeRefiner.setChargeArray (ChargeArr); // pass array with original charges
cout << "Number of original charges: " << chargeRefiner.getChrgCount() << endl;
cout << "Number of refined charges: " << chargeRefiner.getDistrChrgCount () << endl << endl;
cout << "Original Charge values: " << endl;
for (int i = 0; i < chargeRefiner.getChrgCount(); i++)
cout << i + 1 << ": " << chargeRefiner.getSingleCharge (i) << "; "
cout << endl << endl;
cout << "Refined charges with constant SECOND derivate: " << endl;
doublex solution;
solution = chargeRefiner.getRefinedChargeArray (1); // get solution array (const 2nd deriv)
for (int i = 0; i < chargeRefiner.getDistrChrgCount (); i++)
{
cout << i + 1 << ": " << solution[i] << "; "
if ((i+1) % 7 == 0) cout << endl; // add CR every 7 numbers

cout << endl << endl;

cout << "Refined charges with constant FOURTH derivate: " << endl;

solution = chargeRefiner.getRefinedChargeArray (2); // get solution array (const 4th deriv)
for (int i = 0; i < chargeRefiner.getDistrChrgCount(); i++)

cout << i + 1 << ": " << solution[i] << "; "y
if ((i + 1) % 7 == 0) cout << endl; // add CR every 7 numbers

return (0);

In lines 8-16, the original charge values Q1 ...Qg (with index numbers 0---7) are de-
fined in an C++ array of type double. In line 18, an instance of clsChargeDistr is
created and initialized to handle 8 original charges, each of which are to be split into
4 sub-charges. In line 19, the array with the original charges is passed to the instance.
Lines 21-27 just demonstrate how information about the original charge distribution can
be retrieved from the class instance.

Lines 29-37 show, how by calling method getRefinedChargeArray(1), the refined
charges q; ...q32 with constant second derivative can be retrieved from the class in-
stance (by reference) in a simple C++-array (index numbers 0. ..31), and then printed.
Line 35 just ads an carriage-return character every seven numbers.

Similarly, in lines 39-45, by calling method getRefinedChargeArray(2), the refined
charges ¢ ... g3o with constant fourth derivative are retrieved and printed.

28

ot

10

15

20

25

30

35

40

45

Below is the output created by this short program:

Number of original charges: 8
Number of refined charges: 32

Original Charge values:
1: 0.137142; 2: 0.633552; 3: 0.66643; 4: 0.418658; b5: 0.577896; 6: 0.794944; 7: 0.254041; 8: 0.174352;

Refined charges with constant SECOND derivate:

1: 0.0342856; 2: 0.0185916; 3: 0.0264386; 4: 0.0578266; 5: 0.112756; 6: 0.15298; 7: 0.1785;

8: 0.189316; 9: 0.185427; 10: 0.176344; 11: 0.162066; 12: 0.142593; 13: 0.117927; 14: 0.102755;

15: 0.0970787; 16: 0.100898; 17: 0.114212; 18: 0.131643; 19: 0.153189; 20: 0.178852; 21: 0.208631;
22: 0.216585; 23: 0.202713; 24: 0.167016; 25: 0.109493; 26: 0.0680912; 27: 0.0428092; 28: 0.0336474;
29: 0.0406058; 30: 0.0445821; 31: 0.0455761; 32: 0.043588;

Refined charges with constant FOURTH derivate:

1: 0.0342856; 2: 0.0185916; 3: 0.0263434; 4: 0.0579218; 5: 0.104915; 6: 0.150119; 7: 0.182304;

8: 0.196215; 9: 0.192575; 10: 0.178076; 11: 0.158262; 12: 0.137517; 13: 0.119075; 14: 0.105013;

15: 0.0972125; 16: 0.0973572; 17: 0.106934; 18: 0.127234; 19: 0.156049; 20: 0.187679; 21: 0.212923;
22: 0.219087; 23: 0.201153; 24: 0.161781; 25: 0.111309; 26: 0.0677507; 27: 0.0411925; 28: 0.0337895;
29: 0.0397671; 30: 0.0454209; 31: 0.0455761; 32: 0.043588;

3.3.2 Passing and Retrieving Charges in Vectors

The following source code listing shows how to pass original charge values to and get re-
fined charge values from the class instance by means of objects of type vector<double>:

#include <iostream>
#include <vector>
#include "clsChargeDistr.h"

using namespace std;
int main(int argc, char xargv([])
{
vector<double> ChargeVec;
ChargeVec.push_ back(0.13714240) ;
ChargeVec.push_back(0.63355233) ;
ChargeVec.push_ back(0.66643012) ;
ChargeVec.push_ back(0.41865784) ;
ChargeVec.push_ back(0.57789615) ;
ChargeVec.push_back(0.79494448) ;
ChargeVec.push back(0.25404124) ;
ChargeVec.push_ back(0.17435211);
clsChargeDistr chargeRefiner (8, 4); // init: 8 charges to be divided into 4 subcharges each
chargeRefiner.setChargeVector (ChargeVec); // pass vector with original charges
cout << "Number of original charges: " << chargeRefiner.getChrgCount() << endl;
cout << "Number of refined charges: " << chargeRefiner.getDistrChrgCount () << endl << endl;
cout << "Original Charge values: " << endl;
for (int i = 0; i < chargeRefiner.getChrgCount(); i++)
cout << i + 1 << ": " << chargeRefiner.getSingleCharge (i) << "; "
cout << endl << endl;
cout << "Refined charges with constant SECOND derivate: " << endl;
vector<double> solution;
solution = chargeRefiner.getRefinedChargeVector(1l); // get solution vector (const 2nd deriv)
for (int i = 0; i < chargeRefiner.getDistrChrgCount(); i++)
cout << i + 1 << ": " << solution[i] << "; "y
if ((i4+1) % 7 == 0) cout << endl; // add CR every 7 numbers
cout << endl << endl;
cout << "Refined charges with constant FOURTH derivate: " << endl;
solution = chargeRefiner.getRefinedChargeVector (2); // get solution array (const 4th deriv)
for (int i = 0; i < chargeRefiner.getDistrChrgCount(); i++)
{
cout << i 4+ 1 << ": " << solution[i] << "; "y
if ((i +1) % == 0) cout << endl; // add CR every 7 numbers
return (0) ;
¥

29

10

15

20

25

30

35

40

45

This program has the same functionality as the one before. The only differences are that
it uses method setChargeVector in line 20, and method getRefinedChargeVector in
lines 33 and 41.

3.3.3 Passing and Retrieving Charges One by One

The following source code listing shows how to pass original charge values (); one by
one to the class instance, and how to get refined charge values ¢; back one by one from
the class instance:

#include <iostream>
#include "clsChargeDistr.h"

using namespace std;
int main(int argc, char xargv([])
{

clsChargeDistr chargeRefiner (8, 4); // init: 8 charges to be divided into 4 subcharges each

one by one

.13714240) ;

// pass values of original charges
chargeRefiner.setSingleCharge (0, 0

chargeRefiner.setSingleCharge (1, 0.63355233);
chargeRefiner .setSingleCharge (2, 0.66643012);
chargeRefiner.setSingleCharge (3, 0.41865784);
chargeRefiner .setSingleCharge (4, 0.57789615);
chargeRefiner .setSingleCharge (5, 0.79494448);
chargeRefiner.setSingleCharge (6, 0.25404124);
0

chargeRefiner .setSingleCharge (7, .17435211) ;
cout << "Number of original charges: " << chargeRefiner.getChrgCount() << endl;
cout << "Number of refined charges: " << chargeRefiner.getDistrChrgCount () << endl << endl;
cout << "Original Charge values: " << endl;
for (int i = 0; i < chargeRefiner.getChrgCount(); i++)
cout << i + 1 << ": " << chargeRefiner.getSingleCharge (i) << "; "

cout << endl << endl;

cout << "Refined charges with constant SECOND derivate: " << endl;
for (int i = 0; i < chargeRefiner.getDistrChrgCount (); i++)

// get i—th refined charge (const 2nd derivative)
cout << i + 1 << ": " << chargeRefiner.getRefinedCharge (1,i) << "; "
if ((i4+1) % 7 = 0) cout << endl; // add CR every 7 numbers

cout << endl << endl;

cout << "Refined charges with constant FOURTH derivate: " << endl;

for (int i = 0; i < chargeRefiner.getDistrChrgCount(); i++)

{
// get i—th refined charge (const 4th derivative)
cout << i + 1 << ": " << chargeRefiner.getRefinedCharge (2, i) << "; "
if ((i + 1) % 7 == 0) cout << endl; // add CR every 7 numbers

return (0) ;

Again, this program has the same functionality as the two versions before. The only
differences are that it uses method setSingleCharge in lines 10-18, and method
getRefinedCharge in lines 32 and 41.

30

ot

10

15

20

25

30

35

3.3.4 Retrieving Matrices M; and M»

The following code example demonstrates how to retrieve the complete M; and My
matrix from a class instance:

#include <iostream>
#include "clsChargeDistr.h"
using namespace std;

int main(int argc, char sxargv([])
clsChargeDistr chargeRefiner (8, 4); // init: 8 charges to be divided into 4 subcharges each

// Print matrix MI

cout.setf(ios::fixed, ios::floatfield);

cout << " MATRIX Ml: " << endl;

for (int i = 0; i < chargeRefiner.getDistrChrgCount(); i++)

for (int j = 0; j < chargeRefiner.getChrgCount(); j++)

if (chargeRefiner.getMlcell(i, j) >= 0) cout << " "; // print extra space if >=0
cout << chargeRefiner.getMlcell(i, j) << " "; // print Ml(i,j)

}

cout << endl;
cout << endl << endl;
// Print matrix M2
cout << " MATRIX M2: " << endl;
for (int i = 0; i < chargeRefiner.getDistrChrgCount(); i++)
for (int j = 0; j < chargeRefiner.getChrgCount(); j++)
if (chargeRefiner.getM2cell(i, j) >= 0) cout << " "; // print extra space if >=0
cout << chargeRefiner.getM2cell (i, j) << " "; // print M2(i,j)
¥

cout << endl;

return (0);

Below is the output created by this short program:

MATRIX M1:
250000
283171
266586
200243
084143
004046
-0.040049
-0.048140
-0.020229
-0.000973

000000
041146 009892
020573 004946
061719 -0.014838
205731 -0.049459
281043 -0.043524
287656 002968 -
225570 090016
094786 217621 -
004557 281615
.009628 045114 281997
.011573 .054229 218767
.004863 -0.022787 091927
.000234 -0.001096 004420
-0.002315 .010846 -0.043753
-0.002782 .013037 -0.052593
-0.001169 .005478 -0.022099
-0.000056 .000263 -0.001061
.000556 -0.002607 .010519
.000669 -0.003134 .012641 -
.000281 -0.001316 .005307
.000013 -0.000062 .000251
.000134 .000627 -0.002528
-0.000160 .000751 -0.003030
-0.000066 .000311 -0.001253
-0.000002 .000010 -0.000041
.000032 -0.000150 .000606 -0.002516
.000036 -0.000171 .000689 -0.002859 .011891 -0.049459 .205731 084143
.000011 -0.000051 .000207 -0.000858 .003567 -0.014838 .061719 200243
.000004 000017 -0.000069 .000286 -0.001189 004946 -0.020573 266586
-0.000007 000034 -0.000138 .000572 -0.002378 009892 -0.041146 283171
.000000 000000 .000000 .000000 0.000000 000000 0.000000 250000

000000

o

.000000 000000 .000000
.002378 000572 -0.000138 000034 -0.000007
.001189 000286 -0.000069 000017 -0.000004
.003567 -0.000858 0.000207 -0.000051 0.000011
.011891 -0.002859 0.000689 -0.000171 0.000036
.010464 -0.002516 0.000606 -0.000150 0.000032
.000713 .000172 -0.000041 .000010 -0.000002
.021641 .005203 -0.001253 .000311 -0.000066
.052318 .012579 -0.003030 .000751 -0.000160
.043662 .010498 -0.002528 0.000627 -0.000134
004328 -0.001041 0.000251 -0.000062 0.000013
.091652 -0.022036 0.005307 -0.001316 0.000281
.218310 -0.052489 0.012641 -0.003134 0.000669
.281649 -0.043674 0.010519 -0.002607 0.000556
.281670 004407 -0.001061 0.000263 -0.000056
.218372 091756 -0.022099 0.005478 -0.001169
.091756 218372 -0.052593 0.013037 -0.002782
004407 281670 -0.043753 0.010846 -0.002315
.043674 281649 004420 -0.001096 .000234
.052489 218310 091927 -0.022787 .004863
.022036 091652 218767 -0.054229 .011573
.001041 004328 281997 -0.045114 .009628
.010498 -0.043662 281615 0.004557 -0.000973
.012579 -0.052318 217621 0.094786 -0.020229
.005203 -0.021641 090016 0.225570 -0.048140
.000172 -0.000713 002968 0.287656 -0.040049

0

0

0

o

000000 .000000

o

|
!
o
o
o

OCO0OO0O0OO0OO0O00OO0OOo
o oo

o oo
o oo

!
o o

o

coocoooo
o

o

=]
o
=]
=]

|
o
=]
=]

o
=}
o

|
=}
=}

o
'
=}
=}

o

!
o
oo oooo

o

o
o

o
o

o

o
oOocoooocoooo

o

o
o
!
o
o
o

o
o
o

ocoocooo
o

o
o
|
o
o

o
o
!
o
o
o

o
=]
o

=]
o

=]

o
ocoooooo

=]
=]

=}
=}
o
=}

.010464 -0.043524 .281043 004046

o

=}
o
o
=}
=}
o

o
]
o
=}
=}
o

o
oooooo

o oo
o oo
o oo

o
o

31

MATRIX M2:
250000
283171
267449
199380
098603
007850
-0.047423
-0.059030
-0.036061
-0.004879
0.017506
.023434
.014597
.002038
-0.007094
-0.009541
-0.005939
.000819
.002892 -0.008830
.003866 -0.011801
.002376 -0.007254 .016305
.000297 -0.000909 .002047
-0.001171 .003573 -0.008027

000000
041146 009892
022894 007714
064040 -0.017606
188558 -0.050775
279179 -0.050140
296928 001921 -
235335 098994
120436 210630 -
010768 282347
058021 286206
.073183 220817
.044861 111334
.006094 009457
.021788 -0.053614
.029167 -0.067177
.018136 -0.041032
.002496 -0.005478
.019963
.026547 -

000000

o

.000000 000000 0.000000 0.000000 0.000000
.002378 000572 -0.000138 0.000034 -0.000007
.003222 001352 -0.000572 0.000257 -0.000085
.005600 -0.001924 .000710 -0.000291 .000092
.018940 -0.007467 .003042 -0.001336 .000435
.018380 -0.007431 .003084 -0.001370 .000449
.001950 0.000714 -0.000264 0.000109 -0.000034
.035371 0.014184 -0.005862 0.002598 -0.000849
.062652 0.024884 -0.010324 0.004591 -0.001503
.052013 0.019401 -0.008027 0.003573 -0.001171
.007692 -0.004817 .002047 -0.000909 .000297
.106973 -0.039468 .016305 -0.007254 .002376
215708 -0.065390 .026547 -0.011801 .003866
.283139 -0.052564 .019963 -0.008830 .002892
.283772 008949 -0.005478 0.002496 -0.000819
.217381 109005 -0.041032 0.018136 -0.005939
.109005 217381 -0.067177 0.029167 -0.009541
.008949 283772 -0.053614 0.021788 -0.007094
.052564 283139 009457 -0.006094 .002038
.065390 215708 111334 -0.044861 .014597
.039468 106973 220817 -0.073183 .023434
.004817 007692 286206 -0.058021 .017506
.019401 052013 282347 0.010768 -0.004879
-0.001503 .004591 -0.010324 .024884 -0.062652 210630 0.120436 -0.036061
-0.000849 .002598 -0.005862 .014184 .035371 098994 0.235335 -0.059030
-0.000034 .000109 -0.000264 .000714 .001950 001921 0.296928 -0.047423

0

0

0

!
o

OCO0OO0O0OO0O0O0O0O0O
o oo

|
o
o oo

o
o
o

o
o

coocoooo
o

o
o
=]

o
o

|
o o

|
=
=
o

|
o
o
o

o
!

=

o

cooooo
=}

o
!
o
o
=}

o
!
o
o
o
o

[eXe]

o
oOocoooocoooo

o
o

o
o
!
o
o
o

o
o
o

oOo0oooo0oo0ooo
o

o
o
|
o
o

o
o
!
o
=]
o

o

o
|

=]

=]
o

=]
o

|
=]
ocoooooo

=]

o
|

=]

=}

.000449 -0.001370 .003084 -0.007431 .018380 -0.050140 .279179 007850
.000435 -0.001336 .003042 -0.007467 .018940 -0.050775 .188558 098603
.000092 -0.000291 .000710 -0.001924 .005600 -0.017606 .064040 199380
-0.000085 000257 -0.000572 .001352 .003222 007714 -0.022894 267449
-0.000007 000034 -0.000138 .000572 -0.002378 009892 -0.041146 283171
.000000 000000 .000000 .000000 0.000000 000000 0.000000 250000

=}
=}
=}
o
o

o
=}
o
o
=}
o

=}
]
o
o
=}
o

o
!
o
o oo oo

o oo
o oo
o oo

o
o

3.3.5 Generating Matrix Files by Command Line Parameter Calls

The program shown on the following page, named MatrixGen, will be used in chapter 4.
It accepts command line parameters, and generates a text file containing matrix M or
Mj for arbitrary charge distributions and split factors. This is its usage:

MatrixGen Qcount SplitFactor MatrixType
Qcount number of original (coarse) charges
SplitFactor ... number of original (coarse) charges
MatrixType 1 for matrix My, or 2 for My
The name of the generated file is determined by the command line parameters. If e.g.

the program is called with MatrixGen 8 4 2, then a file named Matrix2_8_4.txt is
generated.

32

10

15

20

25

30

35

40

45

50

55

60

65

70

75

#include <iostream>
#include <fstream>
#include "clsChargeDistr.h"
#include <sstream>
#include <string>

using namespace std;

// Charge Distribution Matrix Generator
// 1st param: number of charges
// 2nd param: split factor
// 3rd param: 1 or 2 for Ml or M2
// 3k 3k sk 3k 3k sk sk sk ok sk 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k sk ok 3k sk 3k 3k Sk 3k 3k 3k 3k 3k ok k ok ok
int GenerateMatrix (int, int, int);
int main(int argc, char xargv([])
{
if (argec < 4)
{

cerr << "You must provide 3 parameters H

cerr << "(number of charges, split factor and matrix type

return (1) ;

}

int QCount;
stringstream ssl;
ssl << argv[1];
ss1 >> QCount;

int SplitFactor;
stringstream ss2;
ss2 << argv [2];

ss2 >> SplitFactor;

int MatrixType;
stringstream ss3;
ss3 << argv [3];
ss3 >> MatrixType;

return (GenerateMatrix (QCount, SplitFactor , MatrixType));

}

// Generate Matrix
int GenerateMatrix(int ChargeCount, int SplitFactor,
{

clsChargeDistr chargeRefiner;

fstream MatrixFile;

(1

or 2))" << endl;

int MatrixType)

if (!chargeRefiner.Prepare(ChargeCount, SplitFactor))

return (1) ;

stringstream filename;

if (MatrixType != 1) MatrixType = 2;
filename << "Matrix" << MatrixType << " " << ChargeCount << "
MatrixFile.open(filename.str (), ios_base::out);

if (!MatrixFile)

{

cerr << "Error creating File "

return (1) ;

typedef std::numeric_limits< double > dbl;
MatrixFile. precision (dbl:: max_digits10 + 2);

<< filename.str () << endl;

for (int i = 0; i < chargeRefiner.getDistrChrgCount(); i++)

if (i>0) MatrixFile << endl;
for (int j = 0; j < chargeRefiner.getChrgCount();
{
if (j > 0) MatrixFile << ", ";
if (MatrixType==1)
MatrixFile << chargeRefiner.getMlcell (i, j);
else
MatrixFile << chargeRefiner.getM2cell (i, j);
}
}
MatrixFile.close ();
return (0) ;

J++)

" << SplitFactor <<

Ltxt "

33

3.3.6 Explanations to the Charge Refinement Class Core Function

On page 77ff of chapter 6.3.2, the source code of method Prepare(int, int) is listed.
All line numbers in this chapter refer to this listing. This method is the core
function of this class, as it calculates matrices M; and Ms according to the
algorithm explained in chapter 2.1.1. The method Prepare(int, int) can be called
explicitly (e.g. if the class has been instantiated with the empty constructor,
or if one wishes to change parameters), but it is also utilized by the constructor
clsChargeDistr(int NoOfCharges, int SplitFactor).

In line 196, all former calculations of refined charges are flagged as invalid. In lines
198-209, some plausibility checks are performed. In lines 211-232, additional memory
is allocated, if necessary, for the arrays holding the original charges, and the refined
charges. Eventually, in lines 233-234, the array holding the original charge values is
zeroed, and (in lines 236-237) the NoOfCharges and SplitFactor parameters are stored
as the now current parameters.

Calculation of matrix M; starts in line 239. In lines 242-246, an empty matrix A is
created and filled with zeros (corresponding to step (1) on page 22). The matrix object
is from the "Eigen'-library) http://eigen.tuxfamily.org/ (Version 3.3.7). This library
is also used for all matrix/vector operations and for matrix inversion. It is included in

line 5 of the header file.

In the loop starting from line 247, all matrix elements of matrix A are created. Lines
250-255 correspond to step (2) on page 22, lines 256-267 correspond to step (3) on page
22, and lines 268-275 correspond to step (4) on page 22.

In lines 278-281, the inverted matrix A~! is calculated (utilizing the "Eigen'-library).
This corresponds to step (5) on page 22. As some of the entries of A~! are bound to be
zero, these entries are overwritten with zeros in lines 283-290. This is to minimize small
deviations due to numerical artifacts of the matrix inversion algorithm.

—

Eventually, in lines 293 and 294, an empty matrix M; is created and a vector @ is de-

fined. In the loop starting in line 295, a row-vector Cj and a column vector 7i; of the
final matrix is calculated and added to M, in each pass, corresponding to steps (6) and
(7) on page 22. This concludes calculation of matrix M;.

Starting from line 309, matrix My is calculated. Corresponding to step (2) on page 26,

an empty, all-zero matrix is created in line 313. Please note that on page 26 this matrix
is called B, whereas in the source-code, variable A is re-used.

34

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/

In the loop starting from line 314, all matrix elements of matrix B (source code variable
A) are created. Lines 316-222 correspond to step (3) on page 26, lines 256-267 and 341-
346 correspond to step (4) on page 26, lines 329-340 correspond to step (5) on page 26,
and lines 347-356 correspond to step (6) on page 26.

In line 360, the inverted matrix B~! (source code variable Ainv) is calculated (again
utilizing the "Eigen'-library). This corresponds to step (7) on page 26. As before, some
of the entries of B! (source code variable Ainv) are bound to be zero and are over-
written with zeros in lines 362-378. This is, again, to minimize small deviations due to
numerical artifacts of the matrix inversion algorithm.

Eventually, in line 381, an empty matrix M is created. In the loop starting in line 383,

a row-vector Q and a column vector 7; of the final matrix is calculated and added to
M in each pass, corresponding to steps (8), (9) and (10) on page 27. This concludes
calculation of matrix Mp.

4 Back to Neural Networks

4.1 Can Matrix M, be Retrieved From a Trained Neural Network?

When you compare the exact solution for matrix Ms on page 32 with matrices W; and
W3 on page 17, as extracted from a trained neural network, you will find no obvious
similarity. This is not surprising, though. Matrices Wi and Ws, together with vectors

by and 52, encode the solution redundantly, and also the network having produced these
matrices was trained with scaled target charges.

But scaling was used during the initial experimental phase only in consideration of the
limited output value range of various non-linear activation functions. The final network
employs just the linear activation function. Its output neurons can, in principle, produce
any positive or negative value, and therefore scaling is not required. Hence, equation (17)
already represents the output vector of such network.

By eliminating the brackets, equation (17) can be re-written as

q=Wo Wi @+ Wy by + b (39)

By comparing this equation with equation (36), we see that - if the network produces a
solution equivalent to (36) - the following two relations must be true:

Wy Wi = My (40)

Wa b1+ by =0 (41)

http://eigen.tuxfamily.org/

10

15

20

25

30

35

40

45

50

55

60

65

70

75

This was checked with the following program:

W

CR_convl13.py

Charge Distribution Effective Matrix Calculator
BY HELMUT HOERNER

(C) 2019

import os

import numpy as np

from keras import models

from keras import layers

from keras import callbacks

QCount=8;
SplitFactor =4;
FileName = 'Matrix2_ ’'+4str (QCount)+’ ’'+str (SplitFactor)+’.txt’

np.random.seed (0) # make pseudo random numbers reproducible
maxepochs=10000 # max number of epochs

mypat=20 # stop after this no of epochs if no improvement
trainSetSize=1500000 # training data

valSetSize = 300000 # validation data

bSize=150000 # batch Size

myoptimizer="Adam’ # optimizer

FE koo ok ok ok ok ok sk ok ok sk sk ok Kk ok K K oK oK Kk oK o K Sk oK KK oK K K oK R KK oK o K oK oK K K K
Helper function for printing a Matrix
FE ok ok ok ok ok K K KK K kK KK K oK K oK kK KK K K oK Ok oK K K KK K K K K K K K
def printMatrix (M_name, M) :

print("")

Primt (" sk skokskokok ko skok ook ')

print (M_name)

Primt (" sk skokskokor ok skokokok 1)

for row in M:

for val in row:

if val>=0:
print (’ ’,end=’")
print ("%2.6f" % val, end=’ 7)
print ("")

3k 3k sk sk sk sk sk sk ok 3k ok 3k ok Sk ok 3k sk Sk ok sk sk sk ok ok ok ok ok Sk 3k ok ok sk ok ok 3k 3k sk ok ok ok ok ok ok ok
Helper function for printing a Vector
FE koo ok sk ok ok ok sk sk o sk sk ok Kk sk K K oK R K K sk o K Sk oK KK oK K K oK R K K oK o K K oK K K K
def printVector (V_name, V):
print("")
Primt (" sk skok koo ko skokokok 1)
print (V_name)
Primt (" sk skokskok ook skok ook ')
for val in V:
if val>=0:
print (’ ’,end=’")
print ("%2.6f" % val)

Generate and load matrix M2
if os.path.isfile (FileName):
print (FileName , "already exists.")
else:
print (’Generating matrix file’ ,FileName)
s.system ('MatrixGen ’+str (QCount)+’ ’+str(SplitFactor)+4’

print (’Load matrix file)

f=open (FileName , encoding="utf—8")
MatrixData=f.read ()

f.close ()

MatrixLines=MatrixData.split (’\n’)
Qcount = len (MatrixLines [0].split(’,"))
qcount = len(MatrixLines)

SplitFactor = int (gcount/Qcount)

now parsing matrix data
M2 = np.zeros ((qcount, Qcount))

for i, line in enumerate(MatrixLines):

sline=line.split (’,")
values = [float(x) for x in sline]
M2[i,:]=values

27)

36

80

85

90

95

100

105

110

115

120

125

130

135

140

FE ok ok ok ok ok K ok oK K K K oK oK K KK K oK K KK K K K K K K K Kk
Charge Generator
% 3k 3k 5k >k 5k 3k 5k >k 5k %k 5k 3k 5k >k 5k %k 5k >k 5k %k 5k >k 5k >k 5k %k 3k >k 5k %k %k %k k.
def chrg_ generator(mn):
""" Creates test set with n entries
for i in range(mn):
Creates random full charges
Q=np.random.rand (Qcount)

q=M2QQ
yield ([i-1, a, Q])

3k 3k sk sk sk ok ok sk ok ok ok 3k sk sk 3k 3k sk sk sk ok sk sk ok K Sk ok 3k 3k 3k ok 3k 3k ok ok ok ok ok
Generate data

FE koo ok ok ok ok ok sk ok ok koK ok ok K oK oK K K oK K K K oK K K oK oK K K oK K K oK oK K
totSize=trainSetSize+valSetSize
data=np.zeros ((totSize ,Qcount))
targets=np.zeros ((totSize ,qcount))

offset=0
for i, q, Q in chrg_generator(totSize):
if i%100000==0:
print ("Computing TrainSet",i,"—",i+99999)
data [1]=Q
targets [i]=q

Separate Train Data
train_data=data [: trainSetSize]
train_targets=targets [: trainSetSize]

Separate Validation Data
val_data=data[trainSetSize:trainSetSize+valSetSize]
val_targets=targets [trainSetSize:trainSetSizet+valSetSize]

callbacks_list =
callbacks.EarlyStopping (monitor="val_ loss’, patience=mypat,)

]

% 3k 3k 5k >k 5k 3k 5k >k 5k %k 5k 3k 5k >k 5k %k 5k >k 5k %k 5k >k 5k >k 5k %k 3k %k 5k %k %k %k k.
Create and train Model
2k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
print ()
Primt (" sosorskok ok ok ok ')
print ("Train model")
Print (" ook skok sk koskok ok ")
model=models. Sequential ()
model.add (layers.Dense(Qcount, activation=’linear’,
input__dim=train_data.shape[1]))
model.add(layers.Dense(qcount))
model . summary ()
model. compile (optimizer=myoptimizer, loss=’mse’, metrics=["mae’])
history=model. fit (train_data ,train_targets,
epochs=maxepochs, batch_size=bSize,
callbacks=callbacks_ list ,
validation_ data=(val_data,val_ targets))

3k >k 3k >k >k 3k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k >k >k 3k >k 3k >k >k 3k >k 3k >k >k 5k %k 3k >k >k 3k %k %k Xk >k >k %

Print effective Matrix and vector

Wil=np.transpose (model.get__weights () [0]) # weight matrix input layer
Bl=np.transpose (model.get_weights()[1]) # bias vector input layer
W2=np.transpose (model. get__weights () [2]) # weight matrix output layer
B2=np.transpose (model.get__weights () [3]) # bias vector output layer
printMatrix ("MATRIX W2.W1" ,/W2aW1)

printVector ("VECTOR W2.B14+B2" ,W2aB1+B2)

37

The above program trains a dense network for an initial charge distribution of 8 charges
(line 13), to be split in 4 charges each (line 14). The number of epochs after which the
training should stop if there is no improvement is set to 20 (line 18). Total training set
size is 1,500,000, with a validation set of size 300,000 (lines 19 and 20). Batch size is
chosen to be 150000 (line 21), and this time we use the Adam optimizer (line 23), which
has proven in the initial experimentation phase to be very effective for these linear dense
networks.

Lines 24-50 just encode two helper function for printing out matrices and vectors. Start-
ing from line 32, a matching My matrix file is generated (if not already available) by
calling the MatrixGen-program from chapter 3.3.5, and then matrix My is loaded for
further use. o

Eventually, in lines 78-109, data sets for training and validating are generated at high
speed by utilizing the M> matrix. Starting from line 115, a simple dense network with
just one 8-neuron input layer, and one 8 x 4 = 32 neuron output layer is created and
trained. In lines 134-141, matrix Ws W3 and vector Wa 51 + 52 are printed.

This is the output generated by the program:

kR kKRR Rk
PROGRAM STARTED

kR Rk Rk Rk Rk

Matrix2_8_4.txt already exists.

Load matrix file

Computing TrainSet 0 - 999

Computing TrainSet 100000 - 199999
Computing TrainSet 200000 - 299999
Computing TrainSet 300000 - 399999
Computing TrainSet 400000 - 499999
Computing TrainSet 500000 - 599999
Computing TrainSet 600000 - 699999
Computing TrainSet 700000 - 799999
Computing TrainSet 800000 - 899999
Computing TrainSet 900000 - 999999
Computing TrainSet 1000000 - 1099999
Computing TrainSet 1100000 - 1199999
Computing TrainSet 1200000 - 1299999
Computing TrainSet 1300000 - 1399999
Computing TrainSet 1400000 - 1499999
Computing TrainSet 1500000 - 1599999
Computing TrainSet 1600000 - 1699999
Computing TrainSet 1700000 - 1799999

skt ok skok ok sk ok sk ok ok

Train model
ke ke ok ok ok ok ok ok ok ok ok ok %k ok

Layer (type) Output Shape Param #
dense_11 (Dense) (None, 8) 72
dense_12 (Dense) (None, 32) 288

Total params: 360
Trainable params: 360
Non-trainable params: O

Train on 1500000 samples, validate on 300000 samples

Epoch 1/10000

1500000/1500000 [] - 3s 2us/step - loss: 0.1532 - mean_absolute_error: 0.3158 -
val_loss: 0.1332 - val_mean_absolute_error: 0.2934

Epoch 842/10000
1500000/1500000 [] - 1s lus/step - loss: 7.0756e-09 - mean_absolute_error: 5.6289e-05 -
val_loss: 3.4702e-08 - val_mean_absolute_error: 1.4238e-04

38

sk ok ok skokok ok

MATRIX W2.W1
skokkokkok ok ok skoksk ok
0.250100 .000083
0.283203 -0.041110
0.267480 -0.022869

0.199414 064109 -

0

0

o

000076 -
009911 -
007727 -
017557

050782

050221

001889 -
098979
210613 -
282341
286210
220824

o

.000030
.002346
.003201
.005632 -
.018930 -
.018360 -
.001979
.035403

000130 -0.000020 0.000159 0.000065
000601 -0.000108 0.000065 0.000013
001378 -0.000546 0.000291 -0.000064

0

0

0

o

ocooo
o

cooo

o
=

001879 0.000712 -0.000245 .000114
.007478 0.003031 -0.001352 .000427
007545 0.003069 -0.001514 .000371
.000585 -0.000265 0.000030 -0.000105
.014154 -0.005897 0.002561 -0.000869
.062669 .024855 -0.010343 0.004559 -0.001519
.052018 .019392 -0.008033 0.003561 -0.001176
.007697 -0.004812 0.002051 -0.000904 0.000300
.106982 -0.039455 0.016316 -0.007237 0.002384
.215731 -0.065380 0.026567 -0.011775 0.003881
.283157 -0.052480 0.019956 -0.008730 0.002918
.283783 0.008971 -0.005460 0.002531 -0.000803
217401 0.109021 -0.041005 0.018174 -0.005920
.109034 0.217402 -0.067148 0.029201 -0.009523
.008996 0.283861 -0.053595 0.021869 -0.007049
.0562529 0.283167 009487 -0.006063 0.002057

[¢]

0

0

.098592 188547 -

.007750 279043 -
-0.047528 296766
-0.059064 235306
-0.036084 120414
-0.004886 010761
0.017511 -0.058016
.023446 -0.073172
.014616 -0.044835 111344
.002088 -0.006018 009512
.007072 .021807 -0.053603
-0.009515 .029190 -0.067169
-0.005914 .018161 -0.041017
-0.000735 .002620 -0.005395
.002921 -0.008796 .019984
.003893 -0.011775 .026567 -
.002440 -0.007143 .016351
.000344 -0.000866 .002068
-0.001168 .003576 -0.008028

o
=}
=}

=}
=}
=}

=}
=}

!
=}

o oooo
o

o
o

o
!

o

o

o o
oOoooooo

o
o

o
o

o

o
Ocoocooocoooo

o

o
o
!
o
o

o
o
o

.065369 .215742 111355 -0.044829 0.014615
.039414 .107038 220830 -0.073121 0.023456
.004831 .007740 286203 -0.057977 0.017533
.019396 -0.052010 282342 0.010764 -0.004880
-0.001520 .004570 -0.010337 .024870 -0.062671 210618 0.120413 -0.036075
-0.000867 .002584 -0.005874 .014162 -0.035390 098970 0.235308 -0.059042
-0.000059 .000085 -0.000278 .000688 -0.001973 001894 0.296896 -0.047440

0

0

0

o

o
|

o

o

o
!

o

=}
o
=}

=}
o
=}

o
o

o
oocoooooo

o
o
o

o

.000428 -0.001391 .003068 -0.007450 0.018357 -0.050161 .279149 .007834
.000424 -0.001352 .003033 -
.000095 -0.000289 .000709 -
-0.000073 .000264 -0.000569
.000006 .000045 -0.000132
.000009 .000006 .000002

o

o
o
o

.007485 0.018934 -0.050790 .188546 .098594

o
o
o

0

0
.001927 0.005604 -0.017606 .064047 0.199379
.001356 -0.003208 0.007722 -0.022877 0.267451

0

0

o
o

o
o
o

.000579 -0.002362 0.009901 -0.041126 .283176
000002 0.000011 0.000005 0.000014 .250002

o
o oo

o
o

ke e ok ok ok o ok ok ok ok ok ok ok ok
VECTOR W2.B1+B2
kAR K KK
0.000072
0.000029
0.000025
0.000054
-0.000014
-0.000090
-0.000121
-0.000034
-0.000023
000006
000009
000017
000022
000080
000027
000028
000031
000103
000031
000026
000045
000020
-0.000009
-0.000029
-0.000030
-0.000033
-0.000027
-0.000013
000003
000012
000015
000011

!
o

OCO0OO0OO0OO0O0O0O0O0O0OOo

By comparing this W2.W1 matrix with the exact solution on page 32, it is now confirmed
that the trained network indeed converges towards the exact solution. Also, vector
W2.B1+B2 is close to 0, as expected. After having trained the network for 843 epochs on
1,500,000 sample records, equations (40) and (41) are valid within expected deviations
not larger than 0.0003 (absolute charge value).

39

115

120

125

130

4.2 Retrieving Matrix M, More Directly From a Neural Network

There is still room for improving efficiency, though. Obviously, it does not makes much
sense to let the neural network learn bias vectors 51 and 52, as eventually they are
supposed to become 0 anyway. So, if we train the network without bias vectors, and
therefore set by = 0 and by = 0, equation (39) simplifies to

52&:1@ (42)

The following code snippet shows the required modification in the previous program
(compare with source code on page 37).

FE ok ok ok ok ok K ko ok kK Kk K ok K oKk K K K kK kR K kR Kk K

Create and train Model

3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k %k 5k %k 3k >k %k 5k %k 3k >k % k

print ()

Primt (" sowskorskok ok ok ok ok ok ')

print ("Train model")

Print ("R koxsrokokok 1)

model=models. Sequential ()

model.add(layers.Dense(Qcount, activation=’linear’, use_bias=False,

input_dim=train_data.shape[1]))

model.add(layers.Dense(qcount, use_bias=False))

model . summary ()

model.compile (optimizer=myoptimizer, loss=’mse’, metrics=["mae’])

history=model. fit (train_data ,train_targets,
epochs=maxepochs, batch__size=bSize,
callbacks=callbacks__list ,
validation_data=(val_data,val_targets))

7# 3k >k 3k >k 3k 3k %k 3k >k 3k 5k %k 3k >k 3k 5k %k 3k >k %k >k %k 3k %k %k >k >k 3k %k 3k >k >k 3k %k %k >k % >k %k %k Xk % >k %

Print effective Matrix and vector

?# 3k >k 3k >k >k 3k %k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k >k >k 3k >k 3k >k >k 3k >k 3k >k >k 5k %k 3k >k >k >k %k %k % % >k %k
Wil=np.transpose (model. get__weights () [0]) # weight matrix input layer
W2=np.transpose (model.get_ weights() [1]) # weight matrix output layer
printMatrix ("MATRIX W2.W1" ;W2QW1)

In lines 123 and 125 we have added use_bias=False, so that neither layer now uses a
bias vector anymore. Consequently, the matrix calculation in lines 136-137 has simpli-
fied. This is the output generated by the simplified program:

ke ok ok ok o ok ok ok ok ok ok ok ok

PROGRAM STARTED

sk sk kR sk koK

Matrix2_8_4.txt already exists.

Load matrix file

Computing TrainSet 0 - 999

Computing TrainSet 100000 - 199999
Computing TrainSet 200000 - 299999
Computing TrainSet 300000 - 399999
Computing TrainSet 400000 - 499999
Computing TrainSet 500000 - 599999
Computing TrainSet 600000 - 699999
Computing TrainSet 700000 - 799999
Computing TrainSet 800000 - 899999
Computing TrainSet 900000 - 999999
Computing TrainSet 1000000 - 1099999
Computing TrainSet 1100000 - 1199999
Computing TrainSet 1200000 - 1299999
Computing TrainSet 1300000 - 1399999
Computing TrainSet 1400000 - 1499999
Computing TrainSet 1500000 - 1599999
Computing TrainSet 1600000 - 1699999
Computing TrainSet 1700000 - 1799999

40

skokkokokskok ok skok sk ok ok

Train model
ke o ok ok ok ok ok ok ok ok ok ok ok ok

Layer (type) Output Shape Param #
dense_9 (Dense) (None, 8) 64
dense_10 (Dense) (None, 32) 256

Total params: 320
Trainable params: 320
Non-trainable params: O

Train on 1500000 samples, validate on 300000 samples

Epoch 1/512

Train on 1500000 samples, validate on 300000 samples

Epoch 1/10000

1500000/1500000 [] - 3s 2us/step - loss: 0.1566 - mean_absolute_error: 0.3197 -
val_loss: 0.1405 - val_mean_absolute_error: 0.3021

Epoch 872/10000
1500000/1500000 [] - 1s lus/step - loss: 4.7060e-14 - mean_absolute_error: 1.5329e-07 -
val_loss: 2.2829e-14 - val_mean_absolute_error: 1.0929e-07

okt skkok ok ok ok ko ok
MATRIX W2.W1
sokkok sk kok ok ok ok ko ok
0.250000 .000000
0.283171 -0.041146
0.267449 -0.022894
0.199380 064040
0
0

o

000000
009892
007714
017606
.050775
050140
001921 -
098994
210630 -
282347
286206
220817
111334
009457
053614
087177
.041032
.005478
.019963
.026547 -

o

.000000 000000 -0.000000 0.000000 0.000000
.002378 000572 -0.000138 0.000034 -0.000007
.003222 001352 -0.000572 0.000257 -0.000084
.005600 -0.001924 .000710 -0.000291 .000092
.018940 -0.007467 .003042 -0.001336 .000435
.018380 -0.007431 .003084 -0.001371 .000449
.001950 .000713 -0.000264 0.000108 -0.000034
.035371 .014184 -0.005862 0.002598 -0.000849
.062652 .024884 -0.010324 0.004591 -0.001503
.052013 .019401 -0.008027 0.003573 -0.001171
.007692 -0.004817 .002047 -0.000909 0.000297
.106973 -0.039468 .016305 -0.007254 0.002376
215709 -0.065390 .026547 -0.011801 0.003866
.283139 -0.052564 .019963 -0.008830 0.002892
.283772 008949 -0.005478 0.002496 -0.000819
217381 109005 .041032 .018136 -0.005939
.109005 217381 .067177 .029167 -0.009541
.008949 283772 053614 0.021788 -0.007094
.052564 283139 009457 -0.006094 0.002038
.065390 215709 111334 -0.044861 0.014597
.039468 106973 220817 -0.073183 0.023434
.004817 007692 286206 -0.058021 0.017506
.019401 -0.052013 282347 0.010768 -0.004879
.024884 -0.062652 210630 0.120435 -0.036061
.014184 -0.035371 098994 0.235335 -0.059030
.000714 -0.001950 001921 0.296928 -0.047423

0

0

0

o oo
!
o

o oo

!
o

o
|
o
o
o
o

.098603 188558

.007850 279179
-0.047423 296928
-0.059030 235335
-0.036061 120436
-0.004879 010768
0.017506 -0.058021
.023434 -0.073183
.014597 -0.044861
.002038 -0.006094
.007094 .021788
-0.009541 .029167
-0.005939 .018136
-0.000819 .002496
.002892 -0.008830
.003866 -0.011801
.002376 -0.007254 .016305
.000297 -0.000910 .002047
-0.001171 .003573 -0.008027
-0.001503 .004591 -0.010324
-0.000849 .002598 -0.005862
-0.000034 .000108 -0.000264
.000449 -0.001371 .003084 -
.000435 -0.001336 .003042 -
.000092 -0.000291 .000710 -
-0.000085 .000257 -0.000572
-0.000007 .000034 -0.000138
.000000 .000000 .000000 -

|
o
o
o
o

|
o
o
o
o

o
o
o

|
o

o oooo
o

o
o

o
!
o
o

o o
o oo

o

ocoocooocoooo
=]

o
=]

=]

=}
|

o

o

oo
[l
o o
coocoooooo
=}

o
o
!
o

o
o

o
oooooo

o
o
!
o

o
o
!
o
o

o
o

o
o

o
o

o
o

o
o
o

.007431 .018381 050140 .279179 007850
.007467 .018940 .050775 .188558 098603
.001924 .005600 .017606 .064040 199380
.001352 -0.003221 .007714 -0.022894 267449
.000572 -0.002378 .009892 -0.041146 283171
.000000 -0.000000 -0.000000 0.000000 250000

o
o

o
o
o
o

o
o
o
=]

=]

o
Lo o
OC0O0O0000O0OO00O0O0O0O0O0O0

=]

o
o oooo

o
=]
=]
o

By comparing this new matrix with the exact solution on page 32 again, one can also see
that the simplified bias-vector-free network converges towards the exact solution, this
time with almost all matrix entries being identical up to the 6! digit after the decimal
point.

41

115

120

125

130

4.3 Retrieving Matrix M, Most Directly

The above solution is still not optimal. Both layers have trainable weights (hence we get
two weight matrices M1 and M2). By reducing the first layer to a mere InputLayer with
no weights at all, we finally get the most direct representation:

7=W; @ (43)

The following code snippet shows the required modification to our program (compare
with previous source code on page 40).

?# 3k >k 3k 3k >k 3k >k 3k 5k %k 3k >k 3k 3k >k 3k >k 3k 5k %k 3k >k 3k 5k %k 3k >k %k 3k %k % *k Xk X

Create and train Model

?# 3k >k 3k >k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k %k 5k >k 3k >k Xk X

print ()

Primt (" sosskorskok ok ook ok ook ")

print ("Train model")

Print (" sk koxskokok ok 1)

model=models. Sequential ()

model.add (layers.InputLayer (input_shape=(8,)))

model.add(layers.Dense(qcount, use_bias=False))

model . summary ()

model. compile (optimizer=myoptimizer, loss=’mse’, metrics=["mae’])

history=model. fit (train_data ,train_targets,
epochs=maxepochs, batch_size=bSize,
callbacks=callbacks_ list ,
validation__data=(val_data,val_targets))

?# 3k >k 3k >k >k 5k %k 3k >k 3k 5k %k 3k >k 3k 5k >k 3k >k %k 5k >k 3k >k 3k >k >k 3k %k 3k >k >k 3k %k %k >k % 5k %k %k Xk % >k Xk

Print effective Matrix and vector

?# 3k >k 3k >k >k 3k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k >k >k 3k >k 3k >k >k 3k >k 3k >k >k 5k %k 3k >k >k 5k %k %k >k % %k Xk

W2=np.transpose (model.get_weights () [0]) # weight matrix input layer
printMatrix ("MATRIX W2" 'W2)

In line 123 the first layer is now a InputLayer with no weights. This is the output
generated by this version of the program:

ke o ok ok ok ok ok ok ok ok ok ok ok ok ok

PROGRAM STARTED

ke e o ok ok e ok ok ok ok ok ok ok ok ok

Matrix2_8_4.txt already exists.

Load matrix file

Computing TrainSet 0 - 999

Computing TrainSet 100000 - 199999
Computing TrainSet 200000 - 299999
Computing TrainSet 300000 - 399999
Computing TrainSet 400000 - 499999
Computing TrainSet 500000 - 599999
Computing TrainSet 600000 - 699999
Computing TrainSet 700000 - 799999
Computing TrainSet 800000 - 899999
Computing TrainSet 900000 - 999999
Computing TrainSet 1000000 - 1099999
Computing TrainSet 1100000 - 1199999
Computing TrainSet 1200000 - 1299999
Computing TrainSet 1300000 - 1399999
Computing TrainSet 1400000 - 1499999
Computing TrainSet 1500000 - 1599999
Computing TrainSet 1600000 - 1699999
Computing TrainSet 1700000 - 1799999

42

skokkokokskok ok skok sk ok ok

Train model
ke o ok ok ok ok ok ok ok ok ok ok ok ok

Layer (type) Output Shape Param #

dense_10 (Dense) (None, 32) 256

Total params: 256
Trainable params: 256
Non-trainable params: O

Train on 1500000 samples, validate on 300000 samples

Epoch 1/10000

1500000/1500000 [] - 3s 2us/step - loss: 0.1451 - mean_absolute_error: 0.2884 -
val_loss: 0.1347 - val_mean_absolute_error: 0.2757

Epoch 719/10000
1500000/1500000 [] - 1s 1lus/step - loss: 4.0106e-15 - mean_absolute_error: 3.3280e-08 -
val_loss: 4.1021e-15 - val_mean_absolute_error: 3.4008e-08

ke o ok ok ok o ok ok ok ok ok ok ok ok ok

MATRIX W2

sk kR ok ko
0.250000 .000000
0.283171 -0.041146
0.267449 -0.022894

0.199380 064040 -

0

0

o

000000
009892 -
007714 -
017606
050775
050140
001921 -
098994
210630 -
282347
286206
220817

o

.000000 0.000000 0.000000 0.000000 0.000000
.002378 0.000572 -0.000138 0.000034 -0.000007
.003222 0.001352 -0.000572 0.000257 -0.000084
.005600 -0.001924 0.000710 -0.000291 0.000092
.018940 -0.007467 0.003042 -0.001336 0.000435
.018380 -0.007431 0.003084 -0.001370 0.000449
.001950 0.000714 -0.000264 0.000109 -0.000034
.035371 0.014184 -0.005862 0.002598 -0.000849
.062652 0.024884 -0.010324 0.004591 -0.001503
.052013 0.019401 -0.008027 0.003573 -0.001171
.007692 -0.004817 0.002047 -0.000909 0.000297
.106973 -0.039468 0.016305 -0.007254 0.002376
.215708 -0.065390 0.026547 -0.011801 0.003866
.283138 -0.052564 0.019963 -0.008830 0.002892
.283772 0.008949 -0.005478 .002496 -0.000819
217381 0.109005 -0.041032 .018136 -0.005939
.109005 0.217381 -0.067177 .029167 -0.009541
.008949 0.283772 -0.053614 .021788 -0.007094
.0562564 0.283139 009457 -0.006094 0.002038

0

0

0

o oo
o

=}
o

o
=}

.098603 188558 -

.007850 279179 -
-0.047423 296928
-0.059030 235335
-0.036061 120436
-0.004879 010768
0.017506 -0.058021
.023434 -0.073183
.014597 -0.044861 111334
.002038 -0.006094 009457
.007094 .021788 -0.053614
-0.009541 .029167 -0.067177
-0.005939 .018136 -0.041032
-0.000819 .002496 -0.005478
.002892 -0.008830 .019963
.003866 -0.011801 .026547 -
.002376 -0.007254 .016305
.000297 -0.000909 .002047
-0.001171 .003573 -0.008027
-0.001503 .004591 -0.010324
-0.000849 .002598 -0.005862
-0.000034 .000109 -0.000264
.000449 -0.001371 .003084 -
.000435 -0.001336 .003042 -
.000092 -0.000291 .000710 -
-0.000084 .000257 -0.000572
-0.000007 .000034 -0.000138
-0.000000 -0.000000 -0.000000 -

o
=}

ocooooo
=

! !

o oo oo

o
oo ooooo

o
o

o
o

o
o
o

o
o

oo
coocooocoooo
o o

o
o
|
o
=]

o
=]
o

.065390 .215708 111334 -0.044861 0.014597
.039468 .106973 220817 -0.073183 0.023434
.004817 .007692 286206 -0.058021 0.017506
.019401 -0.052013 282347 0.010768 -0.004879
.024884 -0.062652 210630 0.120436 -0.036061
.014184 -0.035371 098994 0.235335 -0.059030
.000714 -0.001950 001921 0.296928 -0.047423

0

0

0

o

=]
|

o

o
o
o
&

=}
o
=}

o
o
o

o

o
ooooooo

o
o

o
o
o

.007431 0.018380 -0.050140 .279179 0.007850
.007467 0.018940 -0.050775 .188558 0.098603
.001924 0.005600 -0.017606 .064040 0.199380
.001352 -0.003221 .007714 -0.022894 0.267448
.000572 -0.002378 .009892 -0.041146 0.283171
.000000 0.000000 -0.000000 -0.000000 0.250000

o
o
o

o
o
o

o
o
o

o
o
o

o

This directly calculated matrix is identical to the exact solution with a precision of even
more than the 6 printed digits after the decimal point.

43

4.4 Simple Convolutional Networks
4.4.1 Theory

As we have derived the exact solution for the charge-distribution problem in chapter 3.2,
one could question whether it makes sense to deal with the concept of neural networks
at all. If we have to deal with a reasonably small number of charges in the given one-
dimensional setting, the answer is definitely no. The exact solution is easily and quickly
calculated and free from numerical deviations.

However, in cases where the number of original charges reaches 1000 or more, calculat-
ing matrix My becomes more and more time consuming (because of the required matrix
inversion). What’s more, most of the elements in these matrices turn out to have ex-
tremely small values. This is due to the following fact:

Let Q; be the single original charge in the j-th Wigner-Seitz cell, and let n be the num-
ber of (smaller) sub-charges to be created for each original charge @);. Then the original
charge @; will be replaced by charges ¢ ...qu, with a = (Q —1)n+1 and w = nj.
Although in principle all charges Q1 ... Qj,,,, influence the values of g, . .. q., the actual
influence of a specific charge @ on the values of ¢, ...q, becomes smaller and smaller
the farther away Q) is from Q).

Therefore, for calculating ¢, ...q, in good approximation, we can safely establish a
method only considering a certain number of (left and right) neighboring charges of @;.
It turns out this is just what a so-called (one-dimensional) convolutional network does
in the domain of Deep Learning.

Figure 6 illustrates how this works in practice: A convolutional network usable for our
purpose should have an odd number of input neurons (e.g. 5 neurons, as in Fig. 6). It
"scans" the line of original charges Q1 ---@j,,,, one by one, and is always only calculat-
ing the refinement charges ¢, ...q., for a single input charge (); at a time. In one step,
the "center" input neuron gets the value of the currently considered charge @; as input
(in Fig. 6 this is charge Q). The other input neurons receive values of the left and
right neighboring charges. The total number of input neurons is called kernel size. The
convolutional network depicted in Fig. 6 therefore has kernel size 5. The output layer
delivers values for the refined charges g ...q, (in our example four output charges q,,
@ Ge, and qq).

By scanning the whole list of original charges @1 ...Q);,... one by one, e.g. from left to
right, this relatively small network produces a list of almost all refined charges ¢;. It’s
"almost all refined charges", because a network with kernel size s needs % charges to
the left and to the right of the currently considered charge (); as input. So, for example,
a network with kernel size 5 (as in Fig. 6) can process neither the two leftmost charges

Q1 and @2, nor the two rightmost charges @;,,..—1 and Q...

44

Input Layer | @1 | Q2 | Q3 | Qs | Qs | Qs | Q7 | Qs | Qo | Quo

ConvlD Output Layer

Figure 6: A one-dimensional convolutional network scanning an arbitrary long line of
(coarse) charges @; from left to right. In every step it predicts the refined
charges (here: ¢q...qq) which replace the single original charge @; in the
center of the input layer (here it is currently processing charge QJg). The
depicted convolutional network uses 2 charges to the left and 2 charges to the
right of the current charge, and hence has 5 input neurons (kernel size 5).

4.4.2 First Implementation in Python

In all previous programs we have implemented a fairly simple training strategy: The
neural networks were trained against the mse loss function with a fixed learning rate,
until there was no improvement for a certain number of epochs. However, we found that
this training strategy does not work reliably with more refined network architectures (as
we will present in the following chapters).

Firstly, when increasing the number of neurons, at first all network architectures im-
proved as expected, up to a mae value in a magnitude between 10~ and 10~°. However,
after a certain threshold of trainable parameters, some network architectures did not
further improve beyond this mae magnitude. Worse, they sometimes even yielded an
inferior result compared to the simpler versions.

It turns out that this problem can be overcome by a custom loss function that still
returns comparably large absolute values for already well-trained networks where mae
values are already small. Therefore, we have implemented a custom loss function (see

lines 131-135 in the following source code listing). This custom loss function is simply

1011

the sum over all squared errors, multiplied with a factor of ;—%>——.

Secondly, the original, simple training method had some issues in the "end-game'. With
some networks, when the optimum was already reached, the optimizer (in search for a
better optimum) did not stabilize the result. Instead, the loss function values sometimes
began to fluctuate by one order of magnitude. So, for example, an end-result of 1076
for the mae value could actually mean anything between 1076 and 10~7.

We solved this problem by employing the ReduceLROnPlateau callback. In our imple-

mentation, the learning rate is reduced with a factor of 0.2 if there is no improvement
after 5 epochs (see lines 146-148 in the following source code).

45

As a further measure to mitigate this problem, the model is automatically saved after
each epoch if it is better than the best-so-far model. This is realized by use of the
ModelCheckpoint callback (see lines 142-144 in the following source code). After the
training phase, the best model is reloaded and evaluated.

The complete source code is printed on the following three pages. The program trains
a one-dimensional convolutional network for an initial charge distribution of 32 charges
(line 14), to be split in 4 charges each (line 15). The kernel size (i.e. the total number
of neighboring charges taken into account) is defined in line 18. The number of epochs
after which the training should stop if there is no improvement is set to 20 (line 23).
Total training set size is 1,000,000, with a validation set of size 200,000 and a test set
size of 150,000 (lines 24-26). Batch size is chosen to be 100,000 (line 27), and again we
use the Adam optimizer (line 28).

In lines 30-53, a function is implemented that plots the original charges, the actual tar-
get charge values, and the refined charges as produced by the trained network. Starting
from line 55, a matching My matrix file is generated (if not already available) by calling
the MatrixGen-program from chapter 3.3.5, and then matrix My is loaded for further use.

Eventually, in lines 91-128, data sets for training, validating and testing are generated
by utilizing the My matrix and the chrg_generator helper function (lines 80-89).

In lines 131-149, the already explained custom loss function and callbacks are defined
(including the EarlyStopping callback, which stops the training after mypat epochs
without improvement).

Starting from line 150, a one-dimensional convolutional network with just one trainable
layer (no bias weights) is created and trained. Beginning in line 168, the best model is
re-loaded and mae values are printed. Eventually, in lines 180-190, the network’s perfor-
mance is visualized by plotting the network’s output of one record in the test data set
next to the actual target values.

46

10

15

20

25

30

35

40

45

50

55

60

65

70

75

W

CHARGE REFINEMENT BY CONVOLUTIONAL NETWORK
V 1.0, (C) 2019 HELMUT HOERNER

File: CR__conf22savbest.py

import os

import numpy as np

import matplotlib.pyplot as plt

import keras.backend as KBE

from keras import models

from keras import layers

from keras import callbacks

QCount=32

SplitFactor=4

FileName = ’Matrix2_ '4str (QCount)+’ ’'+str (SplitFactor)+’ .txt’
kernel=25

padding=int ((kernel —1)/2) # cells left and right to be left out
np.random.seed (0) # make pseudo random numbers reproducible

maxepochs=5000 # max number of epochs

mypat=20 # stop after this no of epochs if no improvement
trainSetSize=1000000 # training data

valSetSize = 200000 # validation data

testSetSize = 150000 #test data

bSize=100000 # batch Size

myoptimizer="Adam’ # optimizer

EEEEEEEEEEEEEEEEEEEEEEEEREEEEESEEESSE

Charge Plotting Function

FE ok ok ok sk K kK K K KK K KK KK K KK K KK K K KO K K K

def pltChrge(Q, q, q_pred, lines=False, title=’’,6legend=False):
plt.figure(figsize=(16, 8), dpi=150)
cellBorders=[i*SplitFactor —0.5 for i in range(0, Qcount+1)]
x positions of the full and split charges (not yet refined)
Qx=[i*SplitFactort+float (SplitFactor)/2.—-0.5 for i in range (0, Qcount)]
gx=[i for i in range(0, QcountxSplitFactor)]
for xc in cellBorders:

plt.axvline (x=xc, color=’gray’)

plt.plot (Qx,Q, 'ro’, markersize=12, label=’full charges’)
plt.plot (gx,gxSplitFactor , ’bo’,label="split charges=*’'+str (SplitFactor))
plt.plot (gx,q_pred«SplitFactor ,’go’,label="predition*’'+str(SplitFactor))

if lines:
plt.plot (gx,gq*xSplitFactor ,’b’)
plt.plot(gx,q_pred«SplitFactor ,’'g’)

if legend:
plt.legend ()
if title!="":

plt.title (title)
return ()

sk 3k 3k sk >k %k k k >k sk 3k ok sk sk sk sk sk sk sk sk sk >k >k ok ok 3k ok sk sk sk sk sk sk ok sk ok sk ok ok ok ok ok k k
Generate and load matrix M2
3k >k 3k >k 3k 3k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k >k >k 3k >k 3k >k >k 5k >k 3k >k >k 3k >k 3k >k >k %k %
if os.path.isfile (FileName):
print (FileName , "already exists.")
else:
print (’Generating matrix file ’ ,FileName)
s.system ('MatrixGen ’+str (QCount)+’ ’+4str(SplitFactor)4+’ 2)

print ('Load matrix file)

f=open (FileName ,encoding="utf—-8")
MatrixData=f.read ()

f.close ()

MatrixLines=MatrixData.split (’\n’)
Qcount = len (MatrixLines [0].split(’,’))
qcount = len(MatrixLines)

SplitFactor = int(qcount/Qcount)

parsing matrix data
M2 = np.zeros ((qcount, Qcount))

for i, line in enumerate(MatrixLines):
sline=line.split (’,”)
values = [float(x) for x in sline]
M2[i,:]=values

47

80

85

90

95

105

110

115

120

125

130

140

145

FE ok ok ok ok ok K ok oK oK KK K oK oK K K K K oK K KR K K K K KR K K Kk
Charge Generator
% 3k 3k 5k >k 5k 3k 5k >k 5k %k 5k 3k 5k >k 5k %k 5k >k 5k %k 5k >k 5k >k 5k >k 5k >k 5k %k %k %k k.
def chrg_ generator(mn):
""" Creates test set with n entries
for i in range(mn):
Creates random full charges
Q=np.random.rand (Qcount)
q=M2@Q
yield ([i-1, a, Q])

EEREEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEES]

Generate data

FE ok sk ok sk ok ok sk ok sk ok sk ok sk ok ok ok sk sk ok sk ok sk ok sk ok sk ok sk ok ok ok ok sk ok ok K
totSize=trainSetSize+valSetSizettestSetSize

data=np.zeros ((totSize ,Qcount))

targets=np.zeros ((totSize ,qcount))

targets__c=np.zeros ((totSize ,qcount —2xpadding*SplitFactor))

offset=0

for i, q, Q in chrg_generator(trainSetSize+valSetSizettestSetSize):

if i%100000==0:
print ("Computing TrainSet",i,"—",i+99999)
data [1]=Q

targets [i]=q

targets_c[i]=q[paddingxSplitFactor:—padding*SplitFactor]
#re—shape input data for conv network
exp__data=np.expand__dims(data, axis=2)

Separate Train Data

train__data=data [: trainSetSize]
exp_train_data=exp_data[: trainSetSize]
train_targets=targets [:trainSetSize]
train_targets__c=targets_c[:trainSetSize]

Separate Validation Data

val data=data[trainSetSize:trainSetSize+valSetSize]

exp__val data=exp__data|[trainSetSize:trainSetSizet+valSetSize]
val_targets=targets[trainSetSize:trainSetSizetvalSetSize]
val_targets__c=targets_c[trainSetSize:trainSetSizet+valSetSize]

Separate Test Data
test_data=data[trainSetSize+valSetSize:
trainSetSizetvalSetSizettestSetSize]
exp_test_data—exp_data[trainSetSize4valSetSize:
trainSetSizetvalSetSizettestSetSize]
test__targets=targets[trainSetSizet+valSetSize:
trainSetSize+valSetSizet+testSetSize]
test__targets_c=targets_c[trainSetSize+valSetSize:
trainSetSize+valSetSizet+testSetSize]

FE ok ok ok ok ok ok ok ok ok o ok K KoK K K K oK R oK oK K oK K oK K KK K K K KK K
Custom Loss Function
FE ok ok ok ok ok ok ok ok ok ok K koK K K R oK K K K R K K KK KK K K K K K K
def custom__loss(yTrue,yPred):
return KBE.sum(KBE.square (yTrue — yPred))*(1E11/bSize)

callback checkpoints
bestmodelfile="BestModel C_ ’+str (kernel)4’ ~
bestmodelfile=bestmodelfilet+str (bSize)+’ ’'+str (mypat)+’.hdf5’
checkpoint = callbacks.ModelCheckpoint(bestmodelfile, monitor="val_ loss’
verbose=1, save_best_only=True,
mode="min ")
earlystopping=callbacks.EarlyStopping (monitor="1loss’, patience=mypat,)
reduce_lr_loss = callbacks.ReduceLROnPlateau(monitor="1loss’, factor=0.2,
patience=5, verbose=1,
epsilon=1le—4, mode=’min’)
callbacks_list = [checkpoint, earlystopping, reduce_lr_loss]

48

150

155

165

170

175

180

185

190

FE ok ok ok ok ok K oK oK K K K oK K K KK K oK K KK K K K K KR K K KOk

Create and train ConvlD Model

%k 3k ok k ok ok ok ok ok ok ok ok ok ok k k %k %k >k ok ok ok ok ok ok ok ok ko k ko k k ok ok

Primt (" soskorskok ok ok ok ko x ')

print ("Train ConvlD model, excluding border 2 x",6padding)

model=models. Sequential ()
model.add(layers.ConvlD(filters=SplitFactor , use_bias=False,
kernel_size=kernel ,
input__shape=(Qcount,1)))
model.add (layers.Flatten ())
model . summary ()
model. compile (optimizer=myoptimizer, loss=custom_loss, metrics=["mae’])
history=model. fit (exp_train_data,train_targets_c,
epochs=maxepochs, batch__size=bSize,
callbacks=callbacks__list ,
validation_data=(exp_val_ data,val_ targets_c))

%k 3k 3k 3k >k 5k 3k 5k >k 5k >k 5k >k 5k >k 5k %k 5k %k sk >k 5k %k %k %k %k %k k

Load and test best model

k ok ok ok ok ok ok ok ok ok ok ok ok ok k ok k ok ok >k ok ok ok ok ok ok ok k
model.load__weights(bestmodelfile)
train_score=model.evaluate (exp_train data, train_targets_ c)
val_score=model.evaluate (exp_val data, val_ targets_c)
test__score=model.evaluate (exp_test_ data, test_ targets c)

print ("Train mae ", train_score[1])

print ("Validation mae ", val_score[1])
print ("Test mae ", test_score[1l])

3k 3k sk ok ok sk sk sk ok sk sk 3k 3k ok 3k 3k sk 3k 3k 3k 3k sk 3k 3k ok 3k ok sk 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk ok sk sk 3k 3k ok ok ok ok 3k 3k 3k
Make prediction on first test set record
FE ok ok ok ok ok ok oK oK oK KK K K oK K K K oK oK oK K K oK oK oK KK K K oK oK K K K K oK oK K R K oK oK K K R K
prediction=np.zeros (qcount) # empty array

predict core charges using ConvlD model
prediction [paddingxSplitFactor:—padding*SplitFactor]= \
model. predict (exp__test_data[0:1]) [0]

pltChrge (test__data [0], test__targets[0],
prediction, True, '’ ,True)

4.4.3 Results

Figure 8 visualizes how the output of convolutional networks of kernel sizes 3, 5, 7, and
9 compares to the actual target output. As expected, a network with kernel size 3 does
not do a very satisfactory job, as it always considers just one charge on the left side and
one charge on the right of the currently processed charge @);. With increasing kernel
size, accuracy improves visibly (see Fig. 8).

As can be seen in Table 1 and Figure 7, accuracy is well-scaleable. Whereas the simplest
dense network, as presented in chapter 4.3, still needs to train 256 parameters, the
convolutional network reaches e.g. a respectable mae value of 9.95 - 1075 with only 52
parameters. With 100 parameters (still less that 40% of the dense network’s parameters),
mae improves to 5.09 - 1077,

49

Kernel Size | Parameters mae
3 12 0.008837651
5 20 0.003594638
7 28 0.001465990
9 36 0.000597947
11 44 0.000243941
13 52 0.000099474
15 60 0.000040561
17 68 0.000016541
19 76 0.000006742
21 84 0.000002746
23 92 0.000001136
25 100 0.000000509

Table 1: Mean absolute error over a test set of 150,000 records produced by convolutional
networks with various kernel sizes (each trained with 1,000,000 training records
and 200,000 validation records). The task was to create 4 smoothly distributed
sub-charges each, for a total of 32 original (coarse) charges. The middle column
shows the number of trained parameters (no bias weights).

mae
0.010; °

0.001

1074} °

10~7 - parameters
0 20 40 60 80 100

Figure 7: Trade-off between number of trained parameters (due to different kernel sizes)
and mean average error in a simple convolutional network.

20

4.5 Improved Implementation in Python with Handling of Boundary
Charges

Unfortunately, as recognizable in Fig. 8, with increased kernel size not only the accuracy,
but also the number of charges not covered by the method on the left and on the right
boundary, increases. To overcome this boundary problem, we have implemented an en-
hanced version of the software. The source code of this version is printed in Appendix 6.4.

These are the main differences: In lines 116, 124 and 135-136, additional record sets,
containing training-, validation- and test-data for just the left boundary charges are cre-
ated. Then, starting from line 141, a dense network is trained just for the left boundary
charges. Eventually, in line 183 this model is used to predict the left boundary charges.
Because of the symmetry of the problem, this model can also be used to predict the right
boundary charges (see lines 190-191). To do so, the right boundary charges are reversed
before being fed into the model for the left boundary. Then, the output of the model is
reversed once more.

4.5.1 Results

Figure 9 shows the output of the improved software, again the convolutional network
part employing kernel sizes 3, 5, 7, and 9. The border charges fit seamlessly to the
charges of the convolutional model .

o1

r el (258 7 3 el 258 T
C/‘f L LR lﬂ.’/’ i/‘l..’llr { TXJ O/Ol.‘l/vv
A0 [== wnigl e e |
e e e s
= - i—) S— S—
el el e el
. e e R “~— o, _
e e =) = =]
F=al .ﬂ\bwuﬂ.‘w F= il = el
) - -
=" vulll [= ol = il = vl
R - . e e
e ..ﬂoi\\‘ o e
~ & -0 &
o~ - <o <
s - e e
8 -8 e e
e =] e =] R =) =)
e — -0 —t
. Jiivs =Y > I =
= -~ e <o
e PR T
o < i s b il
e i) H e e

S @ @ e o 2 o 2 @ @ 4 o 2 o 2 @ @ = o = o 2 @ Q =] S o
oooooooooooooooooooooooooooo
T

x ;
ol (258 "l "l el
C/OH‘VP L ‘/‘l.[l/‘l.[l/‘/.[
F == i == (== ==L
5 - R— T — —
T o Y el
e > s =) e = e =]
F= il = i . = il =il
I I - e
r= il [= volll = ol = el
R - . e e
e 4\’”‘0\\ e T
. e, e
8 _ e _ e e e _
L & - e
— - <o <o
& - e e
<8 8 e _ =
e =] e =] =) e
- 0 -2 —0
) e N > >N
= -~ <o <
e e . e—e T e—
A .8 I e
N s e < L
o) S)

S ® © = o8 S o S @ © pd o S o S @ © -] S o S] © < N S o~

0000000000000000000000000000

4.6 Better Results with Less Neurons
4.6.1 A Refined Architecture - The Basic ldea

The smaller a network gets (i.e. the less parameters it has to process), the faster it be-
comes. Therefore, the simple convolutional network presented in chapter 4.4 was already
a significant improvement over the original dense network in chapter 4.3.

It is logical to ask whether there could be a network architecture that can produce the
same or better results with even smaller networks. In this chapter we present such an
architecture.

Figure 10 demonstrates the principal idea. A certain number of charges left and right
of the currently processed charge is handled directly by a convolutional network layer
as before. In Figure 10, the currently processed charge is charge Qg (depicted in green),
and the two adjacent charges Q5 and Q)7 (depicted in orange) are directly processed
by the ConviD Output Layer. Of course, in general more than these two neighboring
charges could be processed directly. We shall call the total number of charges directly
processed in this way the core kernel size. The network in Figure 10 has a core kernel
size of 3.

However, information about more distant neighbor charges on the left and right side is
not fed into the ConviD Output Layer directly. Instead, left and right distant charge
values are cumulated into one single value each by the left ConvliD Layer and the
right ConviD Layer. Only these cumulated values are then fed into the ConviD Output
Layer. In the example presented in Figure 10, the distant charges Q)3 and Q4 on the left
side, and distant charges (s and Q9 on the right side are cumulated into L34 and Rgg
(in yellow). We shall call the number of distant charges cumulated in this way on either
side the border kernel size. The network in Figure 10 has a border kernel size of 2.

Input Layer| Q1 | Q2 | Q3 | Q14 | @5 | Qs | Q7 | Qs | Qo | Quo

left /right ConvlD Layers

ConvlD Output Layer

Figure 10: An improved architecture: Only a certain number of charges left and right of
the center charge is handled directly by the output layer. Remote charges are
condensed on the left and right side separately before being further processed.

54

4.6.2 The Actual Implementation

Figure 11 shows how the above presented architecture was actually implemented: Two
convolutional layers avgl and avgR calculate the left and right side cumulative values.
Then, a stack of layers (laystack) is created by copying and cropping layers avglL,
lay_inp and avgR, so that all values to be fed into the output layer in each step are
occupying the same index position.

Finally, this stack is merged and flattened out into layer merge_flat, so that the final
convolutional core layer can process all relevant data in each step. The core layer moves
with according stride. In our example, it moves 5 neurons in every step.

lay_inp | Q1 | Q2 | Q3 | Qs | Q5 | Qe | Q7 | Qs | Qo | Quo

avglL ——P

avgR | Ry | =
\

lay_L | L1o | Los | L34 | Lys |)

inp_cropped_1 | Q3 | Q4 | Qs | Qs |

inp_cropped_2 | Qi | Q5 | Q6 | Q7 | > laystack

inp_cropped_3 | Qs | Qs | Q7 | Qs |

lay_R | Rer| Rrs| Rso| Rou| y

merge_ flat *

core

Figure 11: The actual implementation of the architecture presented in Figure 10.

The complete source code is printed on the following three pages. It is almost identical
to the previous source code, except (of course) for the different network architecture,
implemented in code lines 152-192.

95

10

15

20

25

30

35

40

45

50

55

60

65

70

75

All other minor differences originate from the fact that we now have two parameters
kernel_c and kernel_b, representing the core kernel size and the border kernel size.

CHARGE REFINEMENT BY IMPROVED CONVOLUTIONAL NETWORK
V 1.0, (C) 2019 HELMUT HOERNER

File: CR_conf20Bsavbest.py

import os

import numpy as np

import matplotlib.pyplot as plt

import keras.backend as KBE

from keras import models

from keras import layers

from keras import callbacks

kernel__c=3

kernel_b=2

QCount=32

SplitFactor=4

FileName = ’Matrix2_ ’'+str (QCount)+’ ’+str(SplitFactor)+’ .txt’

maxepochs=5000 # max number of epochs

mypat=20 # stop after this no of epochs if no improvement
trainSetSize=1000000 # training data

valSetSize = 200000 # validation data

testSetSize = 150000 #test data

bSize=100000 # batch Size

myoptimizer="Adam’ # optimizer

FE koo ok ok ok K sk ok ok kK ok oK K oK oK K K oK o K K oK K K oK K K K oK K K K

Charge Plotting Function

FE ok ok ok sk K kK K K K K K oK K K K K KK K kK K R K kO K K

def pltChrge(Q, q, gq_pred, lines=False, title=’’,legend=False):
plt.figure(figsize=(16, 8), dpi=150)
cellBorders=[i*SplitFactor —0.5 for i in range(0, Qcount+1)]
x positions of the full and split charges (not yet refined)
Qx=[i*SplitFactort+float (SplitFactor)/2.—-0.5 for i in range (0, Qcount)]
gx=[i for i in range(0, QcountxSplitFactor)]
for xc in cellBorders:

plt.axvline (x=xc, color=’gray’)

plt.plot (Qx,Q, 'ro’, markersize=12, label=’full charges’)
plt.plot (gx,q*xSplitFactor , 'bo’ ,label="split charges=’'4+str(SplitFactor))
plt.plot (gx,q_pred«SplitFactor ,’go’,label="preditionx’'+str(SplitFactor))

if lines:
plt.plot (gx,g*xSplitFactor ,’b’)
plt.plot(gx,q_pred«SplitFactor , ’g’)

if legend:
plt.legend ()
if title!="’":

plt.title (title)
return ()

3k >k 3k >k 3k 3k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k >k >k 5k %k 3k >k >k 5k >k %k >k >k %k %
Generate and load matrix M2
if os.path.isfile (FileName):
print (FileName , "already exists.")
else:
print (’Generating matrix file ’ ,FileName)
s.system ('MatrixGen ’+str (QCount)+’ ’+4str(SplitFactor)4+’ 2)

print (’Load matrix file)

f=open (FileName ,encoding="utf—8")
MatrixData=f.read ()

f.close ()

MatrixLines=MatrixData.split (’\n’)
Qcount = len (MatrixLines [0].split(’,’))
qcount = len(MatrixLines)

SplitFactor = int (gcount/Qcount)

parsing matrix data
M2 = np.zeros ((qcount, Qcount))

for i, line in enumerate(MatrixLines):
sline=line.split (’,")
values = [float(x) for x in sline]

M2[i,:]=values

o6

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

FE ok ok ok ok ok K ok oK K K K oK oK K KK K oK K KK K K K K K K K Kk
Charge Generator
% 3k 3k 5k >k 5k 3k 5k >k 5k %k 5k 3k 5k >k 5k %k 5k >k 5k %k 5k >k 5k >k 5k %k 3k >k 5k %k %k %k k.
def chrg_ generator(mn):
""" Creates test set with n entries
for i in range(mn):
Creates random full charges
Q=np.random.rand (Qcount)
q=M2@Q
yield ([i-1, a, Q])

padding=kernel__b+int ((kernel_c—1)/2)
np.random.seed (0) # make pseudo random numbers reproducible

FE ok ok ok sk K kK K KK K K K KK K KK KK K KK K R K K K KOk K K
Generate data
FE ok ok koK ok ok ok O K kK K R K oK K K KK K R K ok K K K kR K ko K K
totSize=trainSetSize+valSetSizet+testSetSize
data=np.zeros ((totSize ,Qcount))
targets=np.zeros ((totSize ,qcount))
targets__c=np.zeros ((totSize ,qcount —2xpadding*SplitFactor))
offset=0
for i, q, Q in chrg generator(trainSetSize+valSetSizettestSetSize):
if i%100000==0:
print ("Computing TrainSet",i,"—",i4+99999)
data [1]=Q
targets [i]=q
targets_c[i]=q[paddingx*SplitFactor:—padding*SplitFactor]
#re—shape input data for conv network
exp__data=np.expand_dims(data, axis=2)

Separate Train Data
train__data=data [: trainSetSize]
exp_train__data=exp__data[: trainSetSize]
train_targets=targets [: trainSetSize]
train_targets__c=targets_c [: trainSetSize]

Separate Validation Data
val_data=data[trainSetSize:trainSetSize4valSetSize]

exp_val_ data=exp_data[trainSetSize:trainSetSize+valSetSize]
val_targets=targets [trainSetSize:trainSetSizet+valSetSize]
val_ targets_c=targets_c[trainSetSize:trainSetSize4valSetSize]

Separate Test Data
test_data=data[trainSetSize+valSetSize:
trainSetSize+valSetSizet+testSetSize]
exp_test__data=exp_data[trainSetSizetvalSetSize:
trainSetSize+valSetSizet+testSetSize]
test__targets=targets[trainSetSizet+valSetSize:
trainSetSize+valSetSizet+testSetSize]
test__targets__c=targets_c[trainSetSizet+valSetSize:
trainSetSize+valSetSizet+testSetSize]

sk 3k %k >k >k >k >k k ok sk ko sk sk sk sk sk k k k ok ok ok sk sk sk sk sk sk ok ok ok ok ok ok
Custom Loss Function
def custom_loss(yTrue,yPred):
return KBE.sum(KBE.square (yTrue — yPred))*(1E11/bSize)

callback checkpoints
bestmodelfile="Test_BestModel A_ ’'+4str (kernel_b)+4+’_ ’+str (kernel_c)+’_ "~
bestmodelfile=bestmodelfilet+str (bSize)+’ ’+str (mypat)+’.hdf5"’
checkpoint = callbacks.ModelCheckpoint(bestmodelfile, monitor="val_ loss’
verbose=1, save_best_only=True,
mode="min ")
earlystopping=callbacks.EarlyStopping (monitor="loss’, patience=mypat,)
reduce_lr_loss = callbacks.ReduceLROnPlateau(monitor="1loss’, factor=0.2,
patience=5, verbose=1,
epsilon=le—4, mode="'min’)
callbacks_list = [checkpoint, earlystopping, reduce_lr_loss]

)

o7

155

160

165

170

180

185

190

195

200

205

210

215

FE ok ok ok ok kR K ok Kk K KK K kK K K ko Kk K kK
Create and train model
sk 3k 3k >k >k >k >k ok ok sk sk sk sk sk sk ok ok ok ok ks ok ok sk sk sk ok ok

Primt (" sowskorskok ok sk ok ko ox ')
print ("Train model, exluding border 2 %", 6 padding)
print ("Effective kernel size " ,2xkernel_ b-+kernel c)

lay inp=layers.Input(shape=(Qcount,1), name="input")

lay _avgL=layers.ConvlD(filters=1, use_bias=False, kernel_ size=kernel b,
strides=1, name="avgL") (lay_inp)

lay_avgR=layers .ConvlD(filters=1, use_bias=False, kernel_size=kernel b,
strides=1,
name="avgR") (lay__inp)

padding border=int (2« padding—kernel__b+1)
laystack=[layers .CroppinglD (cropping=(0, padding_border),
name="lay L") (lay_avgL)]
laystack=laystack+ \
[layers .CroppinglD (cropping=(i, int(2xpadding—i)))(lay_inp) \
for i in range(kernel b, kernel_ b+kernel c)]
laystack=laystack+[layers.CroppinglD (cropping=(padding_border, 0),
name="lay_ R") (lay__avgR)]

lay__merge=layers.concatenate (laystack , axis=—1, name="merge")

kernel=len (laystack)
flatlayersize=int ((QCount—2xpadding)*kernel)
lay__merge_flat=layers.Reshape((flatlayersize ,1), name="merge_flat") (lay_merge)

lay__core=layers.ConvlD(filters=SplitFactor , use_bias=False,
kernel__size=kernel, strides=kernel,
name="core") (lay__merge_ flat)

lay__outp=layers.Flatten (name="output") (lay_ core)
model=models.Model(lay__inp, lay_outp)
model . summary ()
model. compile (optimizer=myoptimizer, loss=custom_loss, metrics=["mae’])
history=model. fit (exp__train_data,train_targets_c,
epochs=maxepochs, batch_size=bSize,
callbacks=callbacks__list ,
validation_ data=(exp__val data,val targets_c))

Load and test best model
model.load__weights(bestmodelfile)
train_score=model.evaluate (exp_train_data, train_targets_c)
val__score=model.evaluate (exp_val_data, val_targets_c)
test__score=model.evaluate (exp_test_data, test_targets_c)
print ("Train mae ", train_score[1l])

print ("Validation mae ", val_score[1l])

print ("Test mae ", test_score[1l])
FE ok ok ok ok ok K K oK K KR K K K K KK K oK K K K K oK K KR K K K K K K oK K K K K K K K KRR K K
Make prediction on first test set record

2k 3k ok ok ok ok ok >k ok ok ok ok ok ok ok ok Sk ok ok sk sk sk ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ck ok ok k kR ok ok ok ok ok ok ok ok ok ok
prediction=np.zeros (qcount) # empty array

predict core charges using ConvlD model
prediction [padding*SplitFactor:—padding*xSplitFactor]= \
model. predict (exp_test_data[0:1]) [0]

pltChrge (test_data [0], test_targets[O],
prediction , True, ’’,True)

o8

4.6.3 Results

Figure 12 and Table 2 show results achieved with networks of this improved architecture.
A network with just 30 parameters (core kernel size=3, border kernel size=5) does now
achieve the same mae value in the magnitude of 1074 as before a simple convolutional
network with 52 parameters. That’s an improvement of 42%

Even better, a network with just 50 parameters (core kernel size=5, border kernel
size=11) does now achieve a mae value of about 5-10~". The previous simple convolu-
tional network required 100 parameters for that, which means that the current network
provides a 50% improvement!

mae
0.010:
0.001 -
i 5 = ® Simple Conv
1074 ® o L ® kernel_c=1
5 i ® .
[° ® kernel_c=3
1075 &
i ° ® kernel_c=5
1076 - ¢
10~7 L - : . . parameters
0 20 40 60 80 100

Figure 12: Networks with improved convolutional architecture compared to simple con-
volutional networks with different kernel sizes. For any improved network
with a given core kernel size (kernel_c), the border kernel size has been
varied between 1 and 13.

99

Core Border Parameters mae
Kernel Size | Kernel Size
1 1 14 0.008837629
2 16 0.003734775
3 18 0.001531520
4 20 0.000854907
5 22 0.000572012
6 24 0.000547836
7 26 0.000523856
8 28 0.000523109
9 30 0.000517452
10 32 0.000514900
11 34 0.000511788
12 36 0.000509279
13 38 0.000506662
3 1 22 0.003594634
2 24 0.001472544
3 26 0.000599518
4 28 0.000246431
5 30 0.000100421
6 32 0.000049600
7 34 0.000023020
8 36 0.000017994
9 38 0.000016279
10 40 0.000016203
11 42 0.000016058
12 44 0.000016041
13 46 0.000015983
5 1 30 0.001465993
2 32 0.000599119
3 34 0.000244479
4 36 0.000099735
5 38 0.000040654
6 40 0.000016613
7 42 0.000006756
8 44 0.000002815
9 46 0.000001209
10 48 0.000000680
11 50 0.000000508
12 52 0.000000486
13 54 0.000000474

Table 2: Mean absolute error over a test set of 150,000 records produced by convolutional
networks with improved architecture and various core and border kernel sizes
(each trained with 1,000,000 training records and 200,000 validation records).
The task was to create 4 smoothly distributed sub-charges each, for a total of
32 original (coarse) charges.

60

4.7 Further Slim Down the Neural Net
4.7.1 Exploiting Mirror Symmetry

Is the improved network presented in the previous chapter the end of the line when
it comes to making the neural network more lightweight? The answer is: No, it isn’t.
There is a mirror symmetry waiting to be be exploited for a further slim-down.

In the previous implementation we had to use (and train) two different layers for han-
dling the left and the right remote border charges separately (layers avgL and avgR in
Figure 10). The reason is that layer avgL needs to give more weight to right-side charges,
as these are closer to the currently processed core charge, whereas layer avgR needs to
give - for the same reason - more weight to left-side charges.

But then, the problem is completely mirror-symmetric. If we just flipped the order of
the input charges, we could use layer avgL to also process remote right charges (and vice
versa)!

This idea leads to the further improved network architecture explained in the following

sub-chapter, where there is only one convolutional layer for averaging the remote border
charges on both sides, instead of hitherto two layers.

61

4.7.2 The Actual Implementation

Figure 13 shows how this idea can be converted into an actual software architecture.
Firstly, the input layer lay_inp is mirrored into layer lay_inpRev, and both layers are
then spliced together into layer inp_dbl. This layer now contains all input charges twice:
First in original order, and then in reverse order.

Instead of previously two layers (avgL and avgL), now only one convolutional layer avg
is averaging the border charges. The left half of this layer now contains all averaged left
remote charges, and the right side all averaged right remote charges (the latter still in
reverse order).

Therefore, the left part of layer avg is copied into layer avgL, and the right part into
layer avgRrev, which is eventually back-reversed into a layer avgR.

The rest of the procedure is exactly the same as before: A stack of layers (laystack) is
created by copying and cropping layers avgL, lay_inp and avgR, so that all values to
be fed into the output layer in each step are occupying the same index position.

Finally, this stack is merged and flattened out into layer merge_flat, so that the final
convolutional core layer can process all relevant data in each step. The core layer moves
with according stride. In our example, it moves 5 neurons in every step.

The source code snippet on page 64 shows the actual Python implementation of the

above explained software architecture. It replaces the according part of the previous
program. The rest of the program remains unchanged.

62

lay_inp lay_inpRev
Q1] Q2] Q5] Q4] Q5| Qs Q7] Q5| Qo| =P | Q0] Qs Q7] Q6| Q5] Q4| Q3] Q2] Q1]

inp_dbl *

1Q1] Q2] Q3] Q4| Q5| Qs Q7| Qs | Qo] Qo] Q5| Q7| Q] Q5| Q4| Q3] Q2] Q1 |

avg
Agg| ———>

\

avgRrev
* | Ags| Asr| Are| Ags| Asa| Aus| Aso Ao |

avgl avgR *

|A12|A23|A34|A45|A56|A67|A78|A89| |A21|A32|A43|A54|A65|A76|A87|A98|

lay_L [An] A [4u]
inp_cropped_1 | Qs | Qi | Qs |
inp_cropped_2 | Qi | @ | Qs | > laystack
inp_cropped_3 | @ | @ | @]

|

lay_R Azg | Agy | Ags | J

merge_flat |A12| Q3 | Q4 | Qs |A76|A23| Q4| Qs | Qs |A87|A34| Qs | Q6| Q7 |A98|

e

Figure 13: The improved convolutional network can be further slimmed-down by exploit-
ing mirror symmetry.

core

63

ot

10

15

20

25

30

35

40

45

50

55

FE ok ok ok ok ko K oK K KK K oK oK K KR K KK K K K K K K K

Create and train Model

%k ok ok ok >k ok ok ok ok ok ok ok ok ok k k ok ok ok ok ok ok ok ok ok ko k k

Primt (" soskorskok ok ok ok ko x ')

print ("Train model, exluding border 2 x",6padding)
print ("Effective kernel size " ,2xkernel_ b-+kernel c)

lay inp=layers.Input(shape=(Qcount,1), name="lay inp")
lay_inpRev=layers .Lambda(lambda x: KBE.reverse (x,axes=1),

name="lay inpRev") (lay_inp)
inp__dbl=layers.concatenate ([lay_inp, lay_inpRev], axis=1, name="inp_dbl")

lay__avg=layers.ConvlD(filters=1, use_bias=False, kernel_ size=kernel b,
strides=1, name="avg") (inp_dbl)

lay__avg_size=int (lay__avg.shape[1l])
lay avgL_size=Qcount—kernel b+1
crop_size=lay__avg_ size—lay__avgL_ size

lay__avgL=layers .CroppinglD (cropping=(0,crop_size), name="avgL") (lay_avg)
lay _avgRrev=layers.CroppinglD (cropping=(crop_size ,0) ,
name="avgRrev") (lay_avg)
lay _avgR=layers.Lambda(lambda x: KBE.reverse (x,axes=1),
name="lay avgR") (lay__avgRrev)

padding_border=int (2% padding—kernel b+1)
laystack=[layers.CroppinglD (cropping=(0, padding_border),
name="lay L") (lay_avgL)]
laystack=laystack+ \
[layers .CroppinglD (cropping=(i, int(2*padding—i))) (lay_inp) \
for i in range(kernel_ b, kernel_ b+4kernel_ c)]

laystack=laystack+[layers.CroppinglD (cropping=(padding_border, 0),
name="lay R") (lay_avgR)]

lay__merge=layers.concatenate (laystack axis=—1, name="merge"
s s g

kernel=len (laystack)

flatlayersize=int ((QCount—2*xpadding)+*kernel)

lay_merge_flat=layers.Reshape((flatlayersize ,1),
name="merge flat") (lay_merge)

lay core=layers .ConvlD(filters=SplitFactor , use_bias=False,
kernel__size=kernel, strides=kernel,
name="core") (lay__merge_ flat)

lay__outp=layers.Flatten (name="output") (lay_core)

model=models . Model(lay__inp, lay_outp)

model . summary ()

model. compile (optimizer=myoptimizer, loss=custom_loss, metrics=["mae’])

history=model. fit (exp__train_data,train_targets_c,
epochs=maxepochs, batch_size=bSize,
callbacks=callbacks__ list ,
validation__data=(exp__val_data,val_ targets_c))

64

4.7.3 Results

Table 3 and Figure 14 show results achieved with networks of this slimmed-down ar-
chitecture. With given core kernel sizes and border kernel sizes, all mae values stay
completely unchanged (except some noise in the last digit).

But the same mae values now come with less costs, i.e. with less parameters to be
trained: A mae magnitude of 10™* that required 50 parameters in the initial simple
convolutional network, and still 30 parameters in the previously improved network, now
only needs just 25 parameters (core kernel size=3, border kernel size=5). That’s an 50%
improvement.

The ratio becomes even better if higher precision is required: A mae value of around
5-10~7 required a whopping 100 parameters in the initial simple convolutional network,
and still 50 parameters in the previously improved network. Now, only 39 parameters
are needed to achieve the same result; an improvement of 61% .

mae
0.010 ¢ ®
[o ®
o o ®
0.001 - Wiy
i =1 ¢ " ® Simple Conv
1074 ®: ® @ kernel_c=1
: ¢ ®)
5 ° ® kernel_c=3
107V ¢ P
: . ® ® kernel_c=5
1076t o °
;) °
1077 - parameters
0 20 40 60 80 100

Figure 14: Networks with further slimmed-down, improved convolutional architecture
compared to simple convolutional networks with different kernel sizes. For
any slimmed-down network with a given core kernel size (kernel_c), the
border kernel size has been varied between 1 and 13.

65

Core Border Parameters mae
Kernel Size | Kernel Size
1 1 13 0.008837745
2 14 0.003734339
3 15 0.001531524
4 16 0.000854901
5 17 0.000572028
6 18 0.000547835
7 19 0.000523866
8 20 0.000523113
9 21 0.000517457
10 22 0.000514886
11 23 0.000511783
12 24 0.000509274
13 25 0.000506693
3 1 21 0.003594639
2 22 0.001472260
3 23 0.000599506
4 24 0.000246431
5 25 0.000100421
6 26 0.000044958
7 27 0.000023021
8 28 0.000017994
9 29 0.000016279
10 30 0.000016204
11 31 0.000016058
12 32 0.000016041
13 33 0.000015984
5 1 29 0.001465992
2 30 0.000599010
3 31 0.000244477
4 32 0.000099736
5 33 0.000040655
6 43 0.000016612
7 35 0.000006757
8 36 0.000002813
9 37 0.000001209
10 38 0.000000680
11 39 0.000000509
12 40 0.000000484
13 41 0.000000475

Table 3: Mean absolute error over a test set of 150,000 records produced by convolu-
tional networks with further slimmed-down, improved architecture, using vari-
ous core and border kernel sizes (each trained with 1,000,000 training records
and 200,000 validation records). The task was to create 4 smoothly distributed
sub-charges each, for a total of 32 original (coarse) charges.

66

5 Conclusions

In [Gelfand et al, 2016], a numerical simulation of the early stages of heavy-ion collisions
in 341 dimensions is presented. In this simulation, there is a one-dimensional line of
Wigner-Seitz cells, where each cell contains an individual total charge. For the simu-
lation not to produce heavy numerical artifacts, the total charge in each Wigner-Seitz
cell must be split into smaller sub-charges, which are then smoothly distributed as to
approximate a continuous charge distribution. In this context, "smooth" means that the
discrete fourth derivate should be constant within each cell. In [Gelfand et al, 2016], a
(rather slow) iterative algorithm was implemented to simulate such a charge distribution.

In this paper, we have demonstrated that simple, dense neural networks with just one
input layer, one output layer, and no bias weights, can be trained to learn this charge
distribution task. These networks perform best with a linear activation function.

We have further derived a linear algorithm for calculating the exact charge distribu-
tion without neural networks, and presented a C++ implementation of this algorithm.
This implementation works roughly three magnitudes faster than the algorithm used
in [Gelfand et al, 2016]. Also, we have demonstrated that the weight matrices of the
trained dense networks described above are equivalent to the exact solution.

We have demonstrated that the use of convolutional neural networks still should be
considered when dealing with a very large number of charges. This is because in cases
where the number of original charges becomes very large, the algorithm becomes more
and more time consuming in its initialization phase. Also, for large numbers of charges,
the algorithm for the exact solution performs a lot of unnecessary calculations because
of the following fact:

Let @; be the single original charge in the j-th Wigner-Seitz cell, and let n be the num-
ber of (smaller) sub-charges to be created for each original charge @);. Then the original
charge @; will be replaced by charges ¢ ...q,, with a = (Q —1)n+1 and w = nj.
Although in principle all charges Q1 ... Qj,,,, influence the values of ¢, . .. q., the actual
influence of a specific charge Q on the values of ¢, ...q, becomes smaller and smaller
the farther away Q) is from Q).

Therefore, for calculating ¢, ...q, in good approximation, we can safely establish a
method only considering a certain number of (left and right) neighboring charges of Q;,
and this is just what a convolutional network does. Hence, convolutional networks can
calculate charge distributions for a virtually unlimited number of original charges in
good approximation.

Finally, we have presented two more refined convolutional network architectures, by
which the number of trainable parameters can be further reduced significantly.

67

10

15

20

25

30

35

40

45

50

55

60

65

6 Appendix

6.1 Listing ""Charge Refine Train Data Generator"

o

CHARGE REFINE TRAIN DATA GENERATOR
BY HELMUT HOERNER
VvV 1.0, (C) 2019

import numpy as np
trainSetSize =2000000
numCells = 8 # number of Cells

pointsPerCell = 4 # number of sub—charges per
absolute maximum deviation per sub—charge
maxErr=1E—05 / pointsPerCell

Charge Generator
def chrg_generator(n):
""" Creates test set with n entries
for i in range(n):
Creates random full charges
Q=np.random.rand (numCells)

cell

split full charges into pointsPerCell small charges per
g=np.reshape ([np. full (pointsPerCell ,i) for i in QJ,
(pointsPerCell*numCells))

First refinement
while (not deviationOK(q,1)):
=0

while j<50%xpointsPerCell*numCells:

j+=1
refine (q,1)

Second refinement
while (not deviationOK (q,2)):
i=0

while j<50xpointsPerCell*xnumCells:

j+=1
refine (q,2)
yield ([i—1, a, Q])
FE ok ok ok ok ok K oK oK K K K K oK K KK K oK oK KR K K K K K K Kk
Check Deviations
FE ok ok ok ok ok K K ok oK R K K K K K K K K K oK KK K K K KR K K Kk
def deviationOK (q, step):
""" check if there are deviations beyond
OK=True

for i in range(0, numCellsxpointsPerCell):

if abs(dq_func(q, i, step))>maxErr:
OK=False
break
return (OK)

FE ok k ok ok ok ok K ok kR R K oK KOk KR K oK KOk R K ok ok R R K K oK K R R K K K K R
single random charge refinement function
FE ok ok ok ok ok oK ok ok ok KR oK oK oK K K K K oK oK KK K oK oK K R K oK oK oK K R K oK oK K K

def refine (chrg, step, i=-—1):

o

maxErr

refines two neighboring charges chrgli

] and chrg[i+1]

step ... refinement step 1 or 2 (—1 for random)
i ... Index of charge to be refined (—1 for random)
if i==-1:

i = np.random.randint(pointsPerCell*numCells)

dg=dq_ func(chrg, i, step)
if dq!=0:
chrg[i]—=dq
chrg[i+1]4+=dq
return ()

cell

68

70

75

80

85

90

95

100

105

110

115

120

125

130

135

FE ok ok ok ok ok K ok oK oK K K oK K K R K K oK K KR K K K K K K K Kk
dq_ func
FE ok ok ok ok ok K ok K oK KK K oK K KR K K K K KR K K K K K K K KOk
def dq_func(chrg, i, step):
""" returns delta g, the amount by which charge chrg[i+1] must be changed

and charge chrg[i] must be changed into the other direction
Parameters:
chrg ... Array of sub—charges
i ... index of charge to be modified (toegther with i+41)
step ... 1 for first refinement, 2 for second refinement
dg=0.
if (i+1)%pointsPerCell!=0:
modify only if not a charge on the right side of a cell
if step==1:
First refinement:
Don’t modify outermost charges
if (i>0 and i<pointsPerCell*numCells—2):
modify charges
dg=(chrg[i+2]—3*chrg[i+1]4+3*chrg[i]—chrg[i—1]) /4.
elif step==2:
second refinement
Don’t modify outermost charges
if (i>1 and i<pointsPerCell*xnumCells —3):
modify charges
dg=(—chrg[i+3]+5*chrg[i+2]—10xchrg[i+1]+
10xchrg[i]—5%chrg[i—1]4chrg[i—2])/12.
return (dq)
FE ok ok ok ok ok o K ok ok ok KK oK oK oK Sk KK oK oK oK K K K oK oK K KR K oK oK K K K
MAIN PROGRAM
FE ok ok ok ok ok K ok ok oK KK K oK oK K KK K oK oK K K K oK oK K KR K oK oK K K K
FE ok ok ok ok ok K oK oK oK K K oK oK K KK K K K K KR K oK oK K KR K oK K K K
Generate train_data and train_targets
FE ok ok ok ok ok K oK oK oK KR K K oK K KK K K K KR K K oK K KR K K K K K

train_data=np.zeros ((trainSetSize ,numCells))
train_targets=np.zeros ((trainSetSize ,pointsPerCell*numCells))
k=0

for i, g, Q in chrg generator(trainSetSize):
if i%100==0:
print ("Computing TrainSet" ,i,"—",i+100)

train_data[i]=Q
train_targets [i]=q

HE koo ok ok ok ok ok ok sk ok ok K ok oK K kK oK K K K K
Re—Scale train__targets
HEskook ok ok ok ok ok ok ok ok oK K K oK K KK oK K K K

ttmax=1.5

ttmin=-0.5

train__targets —= ttmin
train_targets /= (ttmax—ttmin)

FEskosk sk sk ok ok ok sk ok sk ok sk ok ok ok ok ok

Pickle Data

>k 3k >k 3k 3k >k 3k 5k >k 3k >k >k 5k Xk >k %k k

import os

import pickle

data_dir="F:\ Al’

data_dir = os.path.join(data_dir, ChargeRefine)
fname=os.path.join (data_dir, 'train_data.pkl’)
myFile=open (fname, "wb")

pickle .dump(train_data ,myFile)

myFile. close ()

fname=os.path.join (data_dir, 'train_targets.pkl’)
myFile=open (fname, "wb")

pickle .dump(train_targets ,myFile)

myFile. close ()

69

10

15

20

25

30

35

40

45

50

55

60

65

70

75

6.2 Listing '"Charge Refine Deep Learning Explorer"

o

CHARGE REFINE DEEP LEARNING EXPLORER
BY HELMUT HOERNER
VvV 1.0, (C) 2019

W

import matplotlib.pyplot as plt
import os

import pickle

from keras import models

from keras import layers

from keras import callbacks

trainSetSize=1500000 # training data

valSetSize=300000 #validation data

testSetSize=200000 #test data

bSize=5000 # batch Size

myoptimizer="rmsprop’ # optimizer

maxepochs=2000 # max number of epochs

mypat=2000 # 100 # stop after this no of epochs if no improvement

numCells = 8 # Number of Cells
pointsPerCell = 4 # Number of sub—charges per cell

y positions of the full and split charges (not yet refined)
Qy=[i*pointsPerCell+float (pointsPerCell)/2.—-0.5 for i in range (0, numCells)]
qy=[i for i in range(0, numCellsxpointsPerCell)]

x positions of cell borders

cellBorders=[i*pointsPerCell —0.5 for i in range(0, numCells+1)]

Create Model
def createModel(nhl, nh2, nh3, nactfunc, actfuncin=True, actfuncout=False):
if (nactfunc==0):
actfunc="linear’
elif (nactfunc==1):
actfunc=’"sigmoid’
elif (nactfunc==2):
actfunc="tanh’
elif (nactfunc==3):

actfunc="softmax’
elif (nactfunc==4):
actfunc="elu’

elif (nactfunc==5):
actfunc="selu’
elif (nactfunc==6):
actfunc="relu’
elif (nactfunc==7):

actfunc="softplus’
elif (nactfunc==8):
actfunc=

elif (nactfunc==9):
actfunc="hard__sigmoid’

elif (nactfunc==10):
actfunc="exponential’

model=models. Sequential ()

if actfuncin:
model.add (layers.Dense(numCells, activation=actfunc,
input__dim=train_data.shape[1]))
else:
model.add(layers.Dense(numCells, input_dim=train_data.shape[1l]))

if nhl1>0:

model.add(layers.Dense(nhl, activation=actfunc))
if nh2>0:

model.add (layers.Dense(nh2, activation=actfunc))
if nh3>0:

model.add (layers.Dense(nh3, activation=actfunc))

if actfuncout:

model.add(layers.Dense(pointsPerCell*numCells, activation=actfunc))
else:

model.add(layers.Dense(pointsPerCell*numCells))
return (model)

70

80

85

90

95

105

110

115

120

125

130

140

145

150

155

160

FE ok ok ok ok ok K ok oK oK KK K oK oK K K K K oK K KR K K K K KR K K Kk

Plot learning curve to file

sk 3k 3k >k >k >k ok k k k k sk sk sk sk sk sk k kR ok ok k ok sk ok sk sk sk ok ok ok ok ok

def plotToFile(history , round, step):
if (step==1):

start=150

loss=history . history [’loss]
val_loss=history . history [’ val_ loss’]

epochs=range (1,len(loss)+1)
plt.plot(epochs|[start:], loss[start:], ’bo’, label=’Training loss’)
plt.plot (epochs|[start:], val_loss[start:], ’'b’, label=’Validation loss’)

plt.title (' Training and Validation Loss’)
plt.legend ()

plt.ylabel ("mean absolute error")

plt.xlabel ("epochs")

imgfname="img"+str (step)+" round"+str (round)+".png"
imgfname=os . path. join (data_ dir ,imgfname)
plt.savefig (imgfname, bbox_inches="tight’, dpi=300)
plt.clf ()

ok ok K ok oK K K ok R K K K K K K K K K R K ok o K K K K K Ok
MAIN PROGRAM

#
#
FE koo ok ko ok ok sk ok ok Kk sk ok K sk oK Kk ok o K K ok oK K K oK K K oK K K
#
#

KoK K ook KK K KO K K KK K KK K K K KK K K K KK K KK Kk
Load train__data and val__data
KoK K koK oK K KK ok kK KK K KK oK K K oK K K K K K K K K K Kok

3

data_ dir="F:\ AI’
data__dir = os.path.join (data_dir, ChargeRefine’)

fname=os.path. join (data_dir, 'train_data.pkl’)
print ("Loading " ,fname)

myFile=open (fname, "rb")
file_train_data=pickle.load (myFile)

myFile. close ()

fname=os.path.join (data_dir, 'train_targets.pkl’)
print ("Loading " ,fname)

myFile=open (fname, "rb")
file_train_targets=pickle.load (myFile)
myFile.close ()

extract train/val/test set
train__data=file_ train__data [0:trainSetSize]
train_targets=file_train_targets [0:trainSetSize]

val data=file_ train_data[trainSetSize:trainSetSize+valSetSize]
val_targets=file train_targets|[trainSetSize:trainSetSize+valSetSize]

test__data=file train_ data[trainSetSizetvalSetSize:
trainSetSizedvalSetSizettestSetSize]

test_targets=file_ train_targets[trainSetSize+valSetSize:
trainSetSized+valSetSizettestSetSize]

Write Log File Header

EEEEE EEEEEEEEEEEEEEREEEEEEEESEESEEESSE
fname=os .path.join (data_dir, "log.txt’)
myFile=open (fname, "w"

myFile. write("trainSetSize="+4str(trainSetSize)+", ")
myFile. write("valSetSize="+str (valSetSize)+", ")
myFile. write("testSetSize="+4str (testSetSize)+", ")
myFile. write ("numCells="4str (numCells)+", ")

myFile. write("pointsPerCell="+4str (pointsPerCell)+", ")
myFile. write("Batch size="+str (bSize)+", ")

myFile. write("Patience="+4str (mypat)+", ")

myFile. write ("Optimizer="+myoptimizer)
myFile. write("\n")

line="round, nhl, nh2, nh3, nactfunc, actfouncout, val loss, test_loss,
line4+="epochs, BestSoFar\n"

myFile. write(line)

myFile.close ()

71

165

170

175

180

190

195

200

205

210

215

220

225

230

235

Kok ok ok K K K oK oK oK K K oK oK oK KK K oK oK K KK K oK K K K K K K KR
Define models to be tested

Parameters:

neurons hidden layer 1

neurons hidden layer 2

neurons hidden layer 3

activation function 0...8

activation function on input layer
activation function on output layer
mylist =[]

mylist.append ([16, 32, 16, 1, True, False])
mylist.append ([16, 0, 0, 2, True, False])
mylist.append ([0, 0, 0, 0, False, False])
add more as needed

R R R R 1

FE ok ok ok ok ok K oK oK K KK K oK oK K K K K oK oK KR K K oK K K K K Kk
Execute Simulations

FE ok ok ok ok ok K ok oK oK KK K oK K K K K K oK K KK K K K K K K K KK
print ("Start Simulation")

callbacks_ list =
callbacks.EarlyStopping (monitor="val loss’, patience=mypat,)

round=0
best__test__loss=999999

for nhl, nh2, nh3, nactfunc, actfuncin, actfuncout in mylist:
round+=1
DI AL (" ook sk ook sk ok sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok sk R ok sk ok sk sk ok sk R ok sk ok sk Sk ok sk ok sk ok kR ok)
print ("ROUND " ,round ,nhl,nh2,nh3,nactfunc, actfuncin, actfuncout)
PTATLE (" sk ok ok ok ot ook s ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok oK oK oK ok o ok ok ok ok oK oK R oK R K o KK Rk Rk Rk)
Simulation
model=createModel (nhl,nh2,nh3,nactfunc,actfuncin, actfuncout)
model. compile (optimizer=myoptimizer, loss=’mae’,
metrics=[’mae’])
history=model. fit (train_data ,train_targets,
epochs=maxepochs, batch_size=bSize,
callbacks=callbacks__list ,
validation__data=(val_data,val_ targets))
loss=history . history [loss "]
val_loss=history . history [’ val_ loss’]
epochscount=len (loss)
test__score=model.evaluate (test__data, test_targets)
print ("Test Loss ", test_score[0])
write to log file
line=str (round)+",
lined+=str (nhl)+", "+str(nh2)+", "+str(nh3)+", "
line+=str (nactfunc)+", "
line+=str (actfuncin)+", "
line+=str (actfuncout)+", "
line+=str (val_loss[—1])+", "
line+=str (test_score [0])+4", "
line+=str (epochscount)+", "

if test_score[0]<best_test_loss:
best__test_loss=test__score [0]
PLImt (" koo ok skok sk skok ok ok ok sk ok ok ok ok ok o ok ok K ok ok ok ok K sk ok ok sk o ok ok K ok koK sk R ok ok Rk ok)
print ("Best so far "4line)
Primt (" sk ok ok sk sk sk ok sk sk sk sk R ok sk sk sk sk K ok sk ok sk R K ok ok sk sk ok ok oK sk ok sk R Rk sk ok ok k)
line4=" %% "

else:
line+=" "

line+="\n"

myFile=open (fname, "a"

myFile. write(line)

myFile.close ()

FE ok ok ok ok koK sk K kK oK R K KK K KK oK kK KK K kK K K K oK K K kK K K K K K R K K K K
Plotting the results

FE ok ok sk ok ok sk ok ko ok kK ok kK ok oK ok K ok K K K K K ok K Kk K ok K oK ko ok K ko K kK K K
plotToFile (history ,round,1)

plotToFile (history ,round,2)

plotToFile (history ,round,3)

plotToFile (history ,round ,4)

72

10

15

20

25

30

35

40

45

50

55

60

65

70

6.3 Listing '"Charge Refinement Class"
6.3.1 Header File

#define _SCL_SECURE_NO_WARNINGS
#pragma once

#include <iostream>

#include <vector>

#include <Eigen/Dense>

using namespace std;

using namespace Eigen;

/] 3k sk sk ok sk sk ok sk sk sk sk ok sk sk ok sk ok sk sk ok sk R ok sk ok sk Sk oK sk K ok ok K sk ok ok sk K
CHARGE REFINEMENT CLASS HEADER

BY HELMUT HOERNER

VIENNA UNIVERSITY OF TECHNOLOGY
INTITUTE FOR THEORETICAL PHYSICS

VvV 0.1, (C) 2019

s ok sk sk sk sk ok ok sk sk ok ok K oK sk ok sk sk K ok sk ok ok R oK sk sk ok sk K ok sk sk ok ok ok ok ok ok /

class clsChargeDistr

{

private:

int chargeCount; // number of (original) charges
int subChargesPerCell; // split—factor (number of "fine" charges per original charge)
VectorXd charges; // vector with original (coarse) charge distribution
doublex charges_cpparr; // C}+ array for handing over original (coarse) charge distribution
vector<double> charges_vec; // vector object for handing over original charge distribution
int charges_cpparrSize; // actual size (reserved memory) of cpp—array
doublex chargesRefl_cpparr; // Ct+ array for handing over first order solution
doublex chargesRef2_ cpparr; // Ct+ array for handing over second order solution
int chargesRefl_cpparrSize; // actual size (reserved memory) of cpp—array
int chargesRef2_ cpparrSize; // actual size (reserved memory) of cpp—array
bool chargesRefl arrvalid; // true, if chargesRefl cpparr holds current values
bool chargesRef2 arrvalid; // true, if chargesRefl cpparr holds current values
vector<double> chargesRefl vec; // vector for handing over first order solution
vector<double> chargesRef2_ vec; // vector for handing over second order solution
bool chargesRefl vecvalid; // true, if chargesRefl vec holds current values
bool chargesRef2 vecvalid; // true, if chargesRef2 vec holds current values
MatrixXd M1l; // matrix for calulating first order solution
MatrixXd M2; // matrix for calulating second order solution
private:
void init ();
void invalidate ();
public:
clsChargeDistr () ;
clsChargeDistr (int, int);
~clsChargeDistr () ;
bool Prepare(int, int);
doublex getChargeArray () ;
bool setChargeArray (double[]) ;
bool setChargeVector(vector<double>&);
vector<double>& getChargeVector () ;
void setSingleCharge (int, double);
double getSingleCharge (int);
double getRefinedCharge (int, int);
doublex getRefinedChargeArray (int);
vector<double>& getRefinedChargeVector (int);
int getChrgCount () ;
int getDistrChrgCount () ;
int getSplitFactor ();
double getMlcell (int, int);
double getM2cell (int, int);
s

73

10

15

20

25

30

35

40

45

50

55

60

65

6.3.2 clsChargeDistr

#include "clsChargeDistr.h"

/**************************************
CHARGE REFINEMENT CLASS

BY HELMUT HOERNER

VIENNA UNIVERSITY OF TECHNOLOGY
INTITUTE FOR THEORETICAL PHYSICS

V 0.1, (C) 2019

sk sk ok ok sk K ok ok ok sk ok ok sk K sk sk ok sk R ok sk K ok oK oK ok K ok ok K ok oK oK ok K sk ok K ok /

[3 ok ok o ok s ok ok ok ok o ok K ok K ook ok ok K oK K K K R oK K ok K KK K K K KK
Empty Constructor
**/
clsChargeDistr :: clsChargeDistr ()

init ();
return ;

/***************************************
Constructor with Prepare(..) call
st sk ok o ok ok ok ok oK oK ok R oK R oK oK R ok K ok ok oK ok R ok R oK oK K ok R ok ok ok ok ok ok ok k[

clsChargeDistr:: clsChargeDistr (int NoOfCharges, int

init ();
Prepare (NoOfCharges, SplitFactor);
return ;

/***************************************
Private helper method for constructors
void clsChargeDistr::init ()

chargeCount = 0;
subChargesPerCell = 0;
invalidate () ;
charges__cpparrSize = 0;
chargesRefl__cpparrSize = 0;
chargesRef2_cpparrSize = 0

}

/] 3k sk sk ok sk sk ok sk sk sk ok ok sk sk sk sk ok sk s ok sk K sk sk ok sk K ok sk ok sk R oK ok K ok oK oK ok

Private helper method: invalidates results
sk sk ok ok sk o ok ok ok sk ok ok sk K ok sk ok sk oK ok ok K ok ok K ok oK oK ok K sk ok K ok K ok ok ok ok %/
void clsChargeDistr::invalidate ()

chargesRefl__arrvalid = false;
chargesRef2 arrvalid = false;
chargesRefl__vecvalid = false;
chargesRef2__vecvalid = false;

}

/***************************************
Destructor
**/
clsChargeDistr::~clsChargeDistr ()
{
if (charges_cpparrSize > 0)
delete [] charges_cpparr;
if (chargesRefl_cpparrSize > 0)
delete [] chargesRefl_ cpparr;
if (chargesRef2_cpparrSize > 0)
delete [] chargesRef2 cpparr;

SplitFactor)

74

70

75

80

85

90

95

100

105

110

115

120

125

[3 3 ok ok ok ok o ok ok ok ok ok ok ok K ok K oK K o ok K ok K oK oK oK oK R ok K K K K oK K oK K Kok oK K K K K K
bool setChargeArray (double Arr[])

sets original (coarse) charge distribution

Prepare must be called first

Arr[] .. Array with the charges before refinement
Returns false on error
**/
bool clsChargeDistr::setChargeArray (double Arr[])

{

if (chargeCount == 0)

cerr << "Error! Must call Prepare before calling setChargeArray!" << endl;
return (false);

// copy Arr to local array

copy (Arr, Arr + chargeCount, charges_cpparr);

// map local array to Eigen—vector

charges = Map<VectorXd>(charges_cpparr, chargeCount);
// all former calculations are invalid

invalidate () ;

return (true);

}

/***

bool setChargeVector(vector<double> &vec)

sets original (coarse) charge distribution

Prepare must be called first

&vec .. Vector with charges before refinement

Returns false on error

sk ook oK oK kK K K K K KK K KR oK K KK K KK oK K 3K K K KK K K KK K KK ok K ok ok ok /

bool clsChargeDistr :: setChargeVector (vector<double> &vec)

{

if (chargeCount == 0)
{

cerr << "Error! Must call Prepare before calling setChargeArray!" << endl;
return (false);

// copy vector to local array

copy(vec.begin(), vec.end(), charges_cpparr);

// map local array to Eigen vector

charges = Map<VectorXd>(charges_ cpparr, chargeCount);
// all former calculations are invalid

invalidate () ;

return (true);

}

/***
doublex getChargeArray ()

Returns original (coarse) charge distribution
Prepare must be called first

sk sk ok ok sk o ok sk ok sk sk ok sk R ok sk K sk sk K ok SR oK sk K ok ok K sk ok oK sk S ok ok K sk sk ok sk K ok ok K sk ok ok sk ok ok /
doublex clsChargeDistr :: getChargeArray ()

{
if (chargeCount == 0)

cerr << "Error! Must call Prepare before calling getChargeArray!" << endl;
return (0) ;

// map charge vector to local array

Map<MatrixXd>(charges_ cpparr, charges.rows(), charges.cols()) = charges;
// return array

return (charges_cpparr);

75

140

145

150

155

160

165

175

180

/3 sk sk ok sk sk ok sk sk sk sk sk sk ok ok sk K sk sk ok sk s ok sk K sk sk ok ok oK oK sk K ok ok K ok ok oK Sk K ok ok K sk o oK ok K
doublex getChargeVector ()

Returns original (coarse) charge distribution
Prepare must be called first
**/

vector<double>& clsChargeDistr :: getChargeVector ()

charges_vec.clear ();
if (chargeCount == 0)

cerr << "Error! Must call Prepare before calling getChargeVector!" << endl;
return (charges_vec);

// copy charge vector to local array
Map<MatrixXd >(charges__cpparr, charges.rows(), charges.cols()) = charges;
// copy local array to local charge vector
charges__vec.insert (charges_vec.end (), &charges_cpparr [0], &charges_cpparr[chargeCount]) ;
// return vector by reference
return (charges__vec);
¥

/***
setSingleCharge (int index, double val)

Sets the value of a single (coarse) original charge
Prepare (NoOfCharges, SplitFactor) must be called first
index ... between 0 and NoOfCharges—1

val ... charge wvalue
**/

void clsChargeDistr:: setSingleCharge (int index, double val)

if (index < 0 || index >= chargeCount)

cerr << endl << "Error! Invalid index in method setSingleCharge!" << endl;
else

charges (index) = val;

invalidate () ;
}
}

/***
getSingleCharge (int index)

Returns single (original) charge value
**/

double clsChargeDistr:: getSingleCharge (int index)

if (index < 0 || index >= chargeCount)
return (0.0) ;
else

return (charges (index));

76

185

195

200

205

210

215

220

225

230

235

240

245

250

255

265

/3 sk sk ok sk sk ok sk sk sk sk sk sk ok ok sk K sk sk ok sk s ok sk K sk sk ok ok oK oK sk K ok ok K ok ok oK Sk K ok ok K sk o oK ok K
Prepare(int NoOfCharges, int SplitFactor)

Creates charge distribution matrices Ml and M2
NoOfCharges ... number of (coarse) original charges
SplitFactor ... number of refined charges per
original charge

Returns false on error

bool clsChargeDistr :: Prepare(int NoOfCharges, int SplitFactor)

int i;
int j;
// all former calulations are invalid

invalidate () ;
if (NoOfCharges < 3)

cerr << "Error! Number of charges in method Prepare must be larger than 2." << endl;
return (false);

if (SplitFactor <= 1)
{

cerr << "Error! Split—factor in method Prepare must be larger than 1." << endl;
subChargesPerCell = 0;
return (false);

// Allocate additional memory for C4+ handover arrays, if neccessary
if (NoOfCharges > charges_cpparrSize)
{
if (charges_cpparrSize >0)
delete [] charges_cpparr;
charges__cpparr = new double [NoOfCharges];
charges_cpparrSize = NoOfCharges;

}
if (NoOfCharges*xSplitFactor > chargesRefl_ cpparrSize)

if (chargesRefl_cpparrSize >0)

delete [] chargesRefl_ cpparr;
chargesRefl cpparr = new double [NoOfChargesxSplitFactor];
chargesRefl_ cpparrSize = NoOfCharges*SplitFactor;

if (NoOfCharges*SplitFactor > chargesRef2_ cpparrSize)

if (chargesRef2_cpparrSize >0)

delete [] chargesRef2_cpparr;
chargesRef2_cpparr = new double[NoOfCharges*SplitFactor];
chargesRef2_ cpparrSize = NoOfChargesxSplitFactor;

for (i = 0;i < NoOfCharges;i++)
charges__cpparr[i] = double (0.);

chargeCount = NoOfCharges;
subChargesPerCell = SplitFactor;

//

// Calculate first order Matrix M1l
//
MatrixXd Aj;

int dcCount = getDistrChrgCount () ;

// Generate inital matrix representing EQ system
A = MatrixXd:: Zero (dcCount , dcCount) ;
for (i = 0; i < dcCount; i++)

if (i % subChargesPerCell == 0)
// every subChargesPerCell line: equation
// "sum of distrcharges == total charge"
for(j=i;j<it+subChargesPerCell; j++)
A(i, j) = double(1);
¥
else if(i==1)
// special treatment for second row
// al = Q1/subChargesPerCell
A(i, 0) = double(subChargesPerCell);
else if (i == dcCount—1)

// special treatment for last row
// a_last = Q_last/subChargesPerCell

77

270

275

285

290

295

300

305

310

315

320

325

330

335

340

345

A(i, i) = double(subChargesPerCell);
else

{
// general first order distr. equation
A(i, i — 2) = double(0.5);

A(i, i — 1) = double(—1.5);

A(i, i) = double(1.5);

A(i, i + 1) = double(—0.5);
¥

}

// Invert matrix A

MatrixXd I = MatrixXd:: Identity (dcCount, dcCount);

MatrixXd Ainv(dcCount, dcCount);
Ainv = A.householderQr () .solve(I);

// Fill in sure zeros to minimize error
// first row zeros
Ainv (0, 0) = double(0.);
for (i = 2; i < dcCount; i++)
Ainv (0, i) = double(0.);
// last row zeros
for (i = 0; i < dcCount—1; i++4)
Ainv (dcCount—1, i) = double(0.);

// Calculate final matrix

M1l = MatrixXd:: Zero (dcCount, chargeCount);
VectorXd Q;

for(i = 0; i < chargeCount; i++)

// initialize charge vector Q for i—th charge

Q = VectorXd:: Zero(dcCount) ;
Q(ixsubChargesPerCell) = 1;

if (i == 0)
Q(1) = 1;
if (i == chargeCount —1)

Q(dcCount—1) = 1;

// Calculate i—th column of solution matrix

Ml.col(i) = AinvxQ;

}
//
// Calculate second order Matrix M2
//
// Generate inital matrix representing EQ system
A = MatrixXd :: Zero(dcCount, dcCount);
for (i = 0; i < dcCount; i++)
{
if (i % subChargesPerCell == 0)
// every subChargesPerCell line: equation
// "sum of distrcharges == total charge"
for (j = i;j<i + subChargesPerCell;j++)
A(i, j) = double(1);
else if (i == 1)
// special treatment for second row
// a_0 = Q_0/subChargesPerCell
A(i, 0) = double(subChargesPerCell);
else if (i == 2)
// special treatment for third row
// a1 = result from Ml
A(i, 1) = double(1.);
else if (i == dcCount — 2)
// special treatment for row before last
// a_secondlast = result from Ml
A(i, i) = double(1.);
else if (i == dcCount — 1)
// special treatment for last row
// a_last = Q_last/subChargesPerCell
A(i, i) = double(subChargesPerCell);
else

// general second order distr. equation

78

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

A(i, i — 3) = double(0.5);
A(i, i — 2) = double(—2.5);
A(i, i — 1) = double(5);
A(i, i) = double(—5);

A(i, i) = double (2.5
A(i, i) =

double(f().)5;;
}
}

// Invert matrix A
Ainv = A.householderQr () .solve(I);

// Fill in sure zeros to minimize error
// first row zeros

Ainv (0, 0) = double (0.);

for (i = 2; i < dcCount; i++4)

Ainv (0, i) = double(0.);
//second row zeros
Ainv (1, 0) = double(0.);

Ainv (1, 1) = double(0.);

for (i = 3; i < dcCount; i++)
Ainv (1, i) = double(0.);

// second last row zeros

for (i = 0; i < dcCount — 2; i+4++)

Ainv (dcCount — 2, i) = double(0.);
Ainv (dcCount — 2, dcCount — 1) = double (0.);
// last row zeros
for (i = 0; i < dcCount — 1; i++)

Ainv (dcCount — 1, i) = double(0.);

// Calculate final matrix
M2 = MatrixXd :: Zero(dcCount, chargeCount);

for (i = 0; i < chargeCount; i++) //

// initialize charge vector Q for i—th charge
Q = VectorXd:: Zero(dcCount) ;

Q(2) = MI(1,1);

Q(dcCount —2) = Ml1(dcCount — 2, i);
Q(ixsubChargesPerCell) = 1;

if (i == 0)
Q(1) = 1;
if (i == chargeCount — 1)

Q(dcCount — 1) = 1;

// Calculate i—th column of solution matrix M2
M2.col (i) = AinvxQ;
i

charges = Map<VectorXd>(charges_ cpparr, chargeCount);

return (true);

}

[3 o ok ook sk ok ok ok ok ok ok ok sk R ok ok sk oK S ok R ok R oK ok oK oK R ok R oK K K oK R ok R Kok oK oK R ok K K
getChrgCount ()

Returns the number of (coarse) original charges

ok ok o ok K ok oK oK oK S oK K oK R oK oK K oK K ok K oK K K oK R oK R oK K K K R ok K KK K oK R K K KoK Kok ok ok ok /
int clsChargeDistr :: getChrgCount ()

{

return (chargeCount) ;

getDistrChrgCount ()
Returns the number of (fine) distributed charges

int clsChargeDistr :: getDistrChrgCount ()

return (chargeCount*subChargesPerCell) ;

}

[3 3 ok ok sk ok sk ok ok ok ok ok sk sk K ok ok sk oK S ok R ok ok oK ok oK ok K ok R oK K K oK R oKk Kok oK oK R ok o K
getSplitFactor ()

Returns the split factor (No of subChargesPerCell)
ok ok o ok K ok oK oK oK S oK K oK R oK oK K K K ok K oK K oK oK K ok K KoK KK R ok K KK K oK R K K K ok Kk ok ok ok /

int clsChargeDistr:: getSplitFactor ()

return (subChargesPerCell) ;
}

79

440

445

450

455

460

465

475

480

485

[3 3 ok ok ok ok o ok ok ok ok ok ok ok K ok K oK K o ok K ok K oK oK oK oK R ok K K K K oK K oK K Kok oK K K K K K
getMlcell (int row, int col)
Returns cell of Ml matrix
**/
double clsChargeDistr:: getMlcell(int row, int col)
{

if (row < 0 || col < 0)

return (double (0.));

if (row >= getDistrChrgCount () || col >= chargeCount)
return (double (0.));

return (Ml(row, col));

[3 3 ok ook ok ok s ok ok ok ok ok ok ok K ok ok oK oK S ok R ok K oK oK oK oK K ok R oK K K oK R oKk Kok oK oK R ok o K
getM2cell (int row, int col)

Returns cell of M2 matrix

s ok ok o ok K ok oK oK oK o oK K ok K K oK K K K oK K KK K oK K oK K oK K oK oK R oK K KK K K R K K ko Kk ok ok ok /
double clsChargeDistr:: getM2cell(int row, int col)

if (row < 0 || col < 0)
return (double (0.));

if (row >= getDistrChrgCount () || col >= chargeCount)
return (double (0.));

return (M2(row, col));

/***
doublex* getRefinedChargeArray (int order)

Returns refined charge distribution as C++ array
order ... 1 or 2 (everything else intepreted as 2)
ok ok o ok K ok oK oK oK S ok K oK R K oK K oK K ok K oK K oK oK K oK R oK oK KoK K ok K KK K oK R ok K K K Kk ok ok ok /

doublex clsChargeDistr :: getRefinedChargeArray (int order)

VectorXd Solution;
if (order == 1)
{

if (!chargesRefl arrvalid)

Solution= Mlxcharges;

Map<MatrixXd>(chargesRefl_cpparr, Solution.rows(), Solution.cols()) = Solution;

chargesRefl_ arrvalid = true;

return (chargesRefl_cpparr);

}

else

{

if (!chargesRef2 arrvalid)

Solution = M2xcharges;

Map<MatrixXd >(chargesRef2 cpparr, Solution.rows(), Solution.cols()) = Solution;

chargesRef2__arrvalid = true;

return (chargesRef2_ cpparr);

80

490

495

500

505

510

515

520

525

530

/3 sk sk ok sk sk ok sk sk sk sk sk sk ok ok sk K sk sk ok sk s ok sk K sk sk ok ok oK oK sk K ok ok K ok ok oK Sk K ok ok K sk o oK ok K
vector<double>& getRefinedChargeVector (int order)

Returns refined charge distribution as vector

order ... 1 or 2 (everything else intepreted as 2)
**/
vector<double>& clsChargeDistr:: getRefinedChargeVector(int order)

if (order == 1 && chargesRefl vecvalid)
return (chargesRefl_vec);

if (order != 1 && chargesRef2__vecvalid)
return (chargesRef2_vec);

getRefinedChargeArray (order) ;
if (order == 1)
{
chargesRefl_vec.clear ();
chargesRefl_vec.insert (chargesRefl_vec.end (), &chargesRefl_cpparr[0], &chargesRefl_ cpparr |
chargeCount*subChargesPerCell]) ;
chargesRefl__vecvalid = true;
return (chargesRefl_vec);

}

else

{
chargesRef2 vec.clear ();
chargesRef2_vec.insert (chargesRef2_ vec.end (), &chargesRef2_ cpparr[0], &chargesRef2_ cpparr |
chargeCountxsubChargesPerCell]) ;
chargesRef2_ vecvalid = true;
return (chargesRef2_vec);

}

¥

[3 3 ok ok ok ok s ok ok ok ok ok ok ok K ok ok sk oK S ok R ok K oK ok oK oK K ok R oK K K oK R oK K Kok oK oK R ok o K

double getRefinedCharge(int order, int index)

Returns the value of a single refined charge

order ... 1 or 2 (everything else intepreted as 2)

index .. between 0 and getDistrChrgCount ()
**/

double clsChargeDistr:: getRefinedCharge (int order, int index)

if (index < 0 || index >= chargeCount*subChargesPerCell)
return (double (0));

return (getRefinedChargeArray (order) [index]) ;

}

81

10

15

20

25

30

35

40

45

50

55

60

65

70

75

6.4 Convolutional Network with Handling of Boundary Charges

o

CHARGE REFINEMENT BY CONVOLUTIONAL NETWORK
WITH ADDITIONAL BOUNDARY HANDLING
V 1.0, (C) 2019 HELMUT HOERNER

W

import os

import numpy as np

import matplotlib.pyplot as plt
from keras import models

from keras import layers

from keras import callbacks

QCount=32;

SplitFactor=4;

FileName = ’Matrix2_ '+str (QCount)+’_ ’+str (SplitFactor)+’ . txt’
kernel=13

padding=int ((kernel —1)/2) # cells left and right to be left out
np.random.seed (0) # make pseudo random numbers reproducible

maxepochs=10000 # max number of epochs

mypat=20 # stop after this no of epochs if no improvement
trainSetSize=1000000 # training data

valSetSize = 200000 # validation data

testSetSize = 150000 #test data

bSize=250000 # batch Size

myoptimizer="Adam’ # optimizer

Charge Plotting Function

def pltChrge(Q, q, q_pred, lines=False, title="',legend=False):
plt.figure(figsize=(16, 8), dpi=150)
cellBorders=[i*SplitFactor —0.5 for i in range (0, Qcount+1)]
x positions of the full and split charges (not yet refined)
Qx=[i*SplitFactor+float (SplitFactor)/2.—-0.5 for i in range(0, Qcount)]
gx=[i for i in range(0, QcountxSplitFactor)]
for xc in cellBorders:

plt.axvline (x=xc, color=’gray’)

plt.plot (Qx,Q, 'ro’, markersize=12, label="full charges’)
plt.plot(gx,g*xSplitFactor , ’bo’ ,label="split charges=*’'+str (SplitFactor))
plt.plot(gx,q_pred«SplitFactor, ’go’,label="predition*’'+str(SplitFactor))

if lines:
plt.plot (gx,g*xSplitFactor , ’b’)
plt.plot (gx,q_predxSplitFactor, 'g’)

if legend:
plt.legend ()
if title!="":

plt.title(title)
return ()

FE koo ok sk ok ok Kk ok ok sk ok K K oK K K oK oK K K oK o K Sk oK K K oK K K oK o K K oK o K oK oK kK K
Generate and load matrix M2
FE ok ok sk sk ok kK K s kK K o KK K o KK K o KKK o KKK o KKK S KK K o K ok
if os.path.isfile (FileName):
print (FileName, "already exists.")
else:
print (> Generating matrix file’ ,FileName)
os.system (’GenM2.exe ’'+str (QCount)+’ ’+str(SplitFactor))

print ('Load matrix file)

f=open (FileName , encoding="utf—-8")
MatrixData=f.read ()

f.close ()

MatrixLines=MatrixData.split (’\n’)
Qcount = len (MatrixLines [0].split(’,”))
qcount = len (MatrixLines)

SplitFactor = int (qcount/Qcount)

parsing matrix data
M2 = np.zeros ((gqcount, Qcount))

for i, line in enumerate(MatrixLines):
sline=line.split(’,")
values = [float(x) for x in sline]
M2[i,:]=values

82

80

85

90

95

105

110

115

120

125

130

140

145

150

155

FE ok ok ok ok ok K ok oK oK KK K oK oK K K K K oK K KR K K K K KR K K Kk
Charge Generator
%k 3k ok k ok ok ok ok ok ok ok ok ok ok k k %k %k >k ok ok ok ok ok ok ok ok ko k ko k k ok ok
def chrg_ generator(mn):
""" Creates test set with n entries
for i in range(mn):
Creates random full charges
Q=np.random.rand (Qcount)
q=M2QQ
yield ([i—-1, a, Q)

EEREEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEES]

Generate data

FE koo ok ok ok ok ok sk ok ok koK ok ok K oK oK K K oK K K K oK K K oK oK K K oK K K oK oK K
totSize=trainSetSize+valSetSizettestSetSize

data=np.zeros ((totSize ,Qcount))

targets=np.zeros ((totSize ,qcount))

targets__c=np.zeros ((totSize ,qcount —2xpadding*SplitFactor))
targets_l=np.zeros ((totSize ,padding*SplitFactor))

offset=0

for i, g, Q in chrg generator(trainSetSize+valSetSizettestSetSize):
if i%100000==0:
print ("Computing TrainSet",i,"—",i+99999)
data [1]=Q

targets [i]=q
targets_c[i]
targets_1[i]

#re—shape input data for conv network
exp__data=np.expand_dims(data, axis=2)

q[padding*SplitFactor:—padding*SplitFactor]
q[: padding*SplitFactor]

Seperate Train Data
train__data=data [: trainSetSize]
exp_train_data=exp_data[: trainSetSize]
train_targets=targets [: trainSetSize]
train_targets_c=targets_c [:trainSetSize]
train__targets__l=targets_1[:trainSetSize]

Seperate Validation Data
val_data=data[trainSetSize:trainSetSize4valSetSize]

exp_val data—=exp_data[trainSetSize:trainSetSizet+valSetSize]
val_targets=targets[trainSetSize:trainSetSizet+valSetSize]
val_targets__c=targets_c[trainSetSize:trainSetSize+valSetSize]
val_targets_l=targets_l[trainSetSize:trainSetSize+valSetSize]

Seperate Test Data
test_data=data[trainSetSize+valSetSize:
trainSetSize+valSetSizet+testSetSize]
exp_test__data=exp_data[trainSetSizet+valSetSize:
trainSetSize+valSetSizet+testSetSize]
test__targets=targets[trainSetSizet+valSetSize:
trainSetSize+valSetSizet+testSetSize]
test__targets__c=targets_ c[trainSetSize+valSetSize:
trainSetSize+valSetSizet+testSetSize]
test__targets_ l=targets_1l[trainSetSize+valSetSize:
trainSetSize+valSetSizet+testSetSize]

callbacks_ list =
callbacks.EarlyStopping (monitor="val loss’, patience=mypat,) |

Create and train Model for left border

PTint (" sk okoskonoskokoxskon "

print ("Train model for LEFT", 6 padding,"' charges")

Lmodel=models. Sequential ()

Lmodel.add(layers.Dense(kernel , activation=’linear’, use_bias=False,

input__dim=train_data[:,: kernel].shape[1l]))
Lmodel.add(layers.Dense(padding*SplitFactor), use_bias=False)

Lmodel. compile (optimizer=myoptimizer, loss='mse’, metrics=[’mae’])

Lhistory=Lmodel. fit (train_data[:,: kernel],train_targets_1,
epochs=maxepochs, batch_size=bSize,
callbacks=callbacks__list ,
validation_data=(val_data[: ,: kernel],val targets_1))

83

160

165

170

175

185

190

FE ok ok koK sk ok K ko K K K Kk K ok K Kk oK K K kK kR K kR K K K

Create and train Model for core data

% 3k 3k 5k >k 5k 3k 5k >k 5k %k 5k 3k 5k >k 5k %k 5k >k 5k %k 5k >k 5k >k 5k >k 5k >k 5k %k %k %k k.

Primt (" sowskorskok ok sk ok ko ox ')

print ("Train core data model, exluding border 2 ="', padding)

model=models. Sequential ()

model.add (layers.ConvlD(filters=SplitFactor , use_bias=False,
kernel size=kernel ,
input__shape=(Qcount,1)))

model.add (layers.Flatten ())

model.compile (optimizer=myoptimizer, loss=’mse’, metrics=["mae’])
history=model. fit (exp_train_data,train_targets_c,
epochs=maxepochs, batch_size=bSize,
callbacks=callbacks__list ,
validation__data=(exp_val_data,val_targets_c))

test__score=model. evaluate (exp__test__data, test_targets_c)

print ("Test Loss ", test_score[0])

sk 3k sk sk ok >k >k >k >k sk ok ok sk sk sk sk sk sk sk sk sk sk sk %k >k >k >k sk sk sk sk sk sk sk sk sk sk sk sk sk %k k k> k ok ok sk sk sk sk sk
Plot prediction on first test set record

3k >k 3k >k 3k 3k >k 3k >k 3k 5k >k 3k >k 3k >k >k Sk >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k >k 3k >k >k 3k >k 3k >k >k 5k %k 3k >k >k >k *k %
prediction=np.zeros (qcount) # empty array

predict left charges with Lmodel
prediction [: padding*SplitFactor]=Lmodel. predict (test_data [0:1,: kernel])

predict right charges also using Lmodel by reversing charge array
prediction[—padding*SplitFactor:]=
Lmodel. predict (test_data [0:1,: Qcount—l—kernel: —1])[0,:: —1]

predict all other charges using core ConvlD model
prediction [paddingxSplitFactor:—padding*SplitFactor]= \
model. predict (exp__test_data[0:1]) [0]

pltChrge (test__data [0], test__targets[0],
prediction, True, ’’,True)

84

List of Tables

1

Mean absolute error over a test set of 150,000 records produced by con-
volutional networks with various kernel sizes (each trained with 1,000,000
training records and 200,000 validation records). The task was to create
4 smoothly distributed sub-charges each, for a total of 32 original (coarse)
charges. The middle column shows the number of trained parameters (no
bias weights).
Mean absolute error over a test set of 150,000 records produced by convo-
lutional networks with improved architecture and various core and border
kernel sizes (each trained with 1,000,000 training records and 200,000
validation records). The task was to create 4 smoothly distributed sub-
charges each, for a total of 32 original (coarse) charges..
Mean absolute error over a test set of 150,000 records produced by con-
volutional networks with further slimmed-down, improved architecture,
using various core and border kernel sizes (each trained with 1,000,000
training records and 200,000 validation records). The task was to create
4 smoothly distributed sub-charges each, for a total of 32 original (coarse)
charges. L

List of Figures

1

Originally, the total charge in each Wigner-Seitz cell (green lines) is rep-
resented by a single charge (red dots). By splitting these single charges
into multiple charges (blue dots), and distributing them so that the dis-
crete fourth derivative is constant within each cell, a continuous charge
distribution can be approximated. Please note that the refined charges
(blue dots) are plotted with four times their actual values to better set
them in visual context with the original charges (red dots).
Initial distribution of the smaller sub-charges (blue dots). Please note
that the sub-charges (blue dots) are plotted with four times their actual
values to better set them in visual context with the original charges (red
dots). . ..
Training and validation loss (mean absolute error) development while
training a dense deep network with 8-16-32-16-32 neurons and sigmoid
activation function over 2000 epochs. L oo
Training and validation loss (mean absolute error) development while
training a dense network with 8 input and 32 output neurons (no hid-
den layers) and linear activation function over 2000 epochs.
An exemplary toy-problem: 3 original charges @1, @2, @3 (red dots) are to
be split into 4 sub-charges each, so that the discrete second derivative of
the final charge distribution ¢; - - - g12 (blue dots) becomes constant within
each Wigner-Seitz cell (green separation lines).

85

50

11
12

13

14

A one-dimensional convolutional network scanning an arbitrary long line
of (coarse) charges @; from left to right. In every step it predicts the
refined charges (here: ¢, ...qq) which replace the single original charge
@); in the center of the input layer (here it is currently processing charge
Q¢). The depicted convolutional network uses 2 charges to the left and 2
charges to the right of the current charge, and hence has 5 input neurons
(kernel size 5). 45
Trade-off between number of trained parameters (due to different kernel
sizes) and mean average error in a simple convolutional network. 50
Performance of convolutional networks with kernel sizes 3, 5, 7, and 9. . . 52
Improved software with kernel sizes 3, 5, 7, 9 and boundary charge handling. 53
An improved architecture: Only a certain number of charges left and
right of the center charge is handled directly by the output layer. Remote
charges are condensed on the left and right side separately before being
further processed.o 54
The actual implementation of the architecture presented in Figure 10. . . 55
Networks with improved convolutional architecture compared to simple
convolutional networks with different kernel sizes. For any improved net-
work with a given core kernel size (kernel_c), the border kernel size has
been varied between 1 and 13.. oL 59
The improved convolutional network can be further slimmed-down by
exploiting mirror symmetry.o Lo Lo 63
Networks with further slimmed-down, improved convolutional architec-
ture compared to simple convolutional networks with different kernel sizes.
For any slimmed-down network with a given core kernel size (kernel_c),
the border kernel size has been varied between 1 and 13. 65

References

[Gelfand et al, 2016] D. Gelfand, A. Ipp, D. Miiller, "Simulating collisions of thick

nuclei in the color glass condensate framework", Phys.Reuv.
D94 (2016) no.1, 014020 arXiv:1605.07184 [hep-ph] TUW-
16-14

[Goodfellow et al, 2016] 1. Goodfellow, Y. Bengio, and A. Courville, "Deep Learning'",

MIT Press (2016), Cambridge, Mass.

[Moore et al, 1998| G. D. Moore, C.-r. Hu, and B. Miiller, "Chern-Simons num-

ber diffusion with hard thermal loops" Phys.Rev. D58 (1998)
045001, arXiv:hep-ph/9710436

86

	Introduction
	The Deep Learning Approach
	Generating Training Data with the Original Iterative Algorithm
	Theory
	Implementation in Python

	Exploration of Multiple Deep Learning Configurations
	Implementation in Python
	Results

	The Linear Algebra Approach
	From Deep Learning to Linear Algebra
	The Exact Linear Solution
	Exact Solution for Constant Second Derivative
	Exact Solution for Constant Fourth Derivative

	Implementation in C++
	Passing and Retrieving Charges in C++ Arrays
	Passing and Retrieving Charges in Vectors
	Passing and Retrieving Charges One by One
	Retrieving Matrices M1 and M2
	Generating Matrix Files by Command Line Parameter Calls
	Explanations to the Charge Refinement Class Core Function

	Back to Neural Networks
	Can Matrix M2 be Retrieved From a Trained Neural Network?
	Retrieving Matrix M2 More Directly From a Neural Network
	Retrieving Matrix M2 Most Directly
	Simple Convolutional Networks
	Theory
	First Implementation in Python
	Results

	Improved Implementation in Python with Handling of Boundary Charges
	Results

	Better Results with Less Neurons
	A Refined Architecture - The Basic Idea
	The Actual Implementation
	Results

	Further Slim Down the Neural Net
	Exploiting Mirror Symmetry
	The Actual Implementation
	Results

	Conclusions
	Appendix
	Listing "Charge Refine Train Data Generator"
	Listing "Charge Refine Deep Learning Explorer"
	Listing "Charge Refinement Class"
	Header File
	clsChargeDistr

	Convolutional Network with Handling of Boundary Charges

